1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283 |
- # @package _global_
- defaults:
- - override /trainer: default # choose trainer from 'configs/trainer/'
- - override /model: null
- - override /datamodule: thepile
- - override /optimizer: adamw-apex # slight speedup (1-2%) over Pytorch AdamW
- - override /scheduler: cosine-warmup-timm
- - override /callbacks: [default, norm-monitor]
- - override /metrics: [perplexity, num-tokens]
- - override /logger: wandb
- # all parameters below will be merged with parameters from default configurations set above
- # this allows you to overwrite only specified parameters
- task:
- _target_: src.tasks.seq.SequenceLMModel
- seed: 1111
- trainer:
- accelerator: gpu
- devices: 8
- num_nodes: 1
- accumulate_grad_batches: ${div_up:${train.global_batch_size}, ${eval:${trainer.devices} * ${datamodule.batch_size} * ${trainer.num_nodes}}}
- max_steps: 800000
- val_check_interval: ${eval:2000 * ${.accumulate_grad_batches}}
- check_val_every_n_epoch: null # We don't care about epoch boundary
- precision: bf16
- gradient_clip_val: 1.0
- strategy: null
- datamodule:
- batch_size: 16 # Per GPU
- batch_size_eval: ${.batch_size} # Fused dense only support batch size at most 64k
- max_length: 2048
- fault_tolerant: True
- ddp: ${eval:"${trainer.devices} > 1"}
- train:
- gpu_mem: ${eval:"round(float(__import__('subprocess').check_output('nvidia-smi -i 0 --query-gpu=memory.total --format=csv,noheader,nounits', shell=True).strip().decode()) / 1000)"}
- global_batch_size: 256
- optimizer:
- lr: 6e-4
- weight_decay: 0.1
- optimizer_param_grouping:
- bias_weight_decay: False
- normalization_weight_decay: False
- scheduler:
- t_in_epochs: False
- t_initial: 600000
- warmup_lr_init: 1e-6
- warmup_t: ${eval:0.01 * ${trainer.max_steps}}
- lr_min: ${eval:0.1 * ${train.optimizer.lr}}
- loss_fn:
- # This is faster and uses less memory than torch.nn.CrossEntropyLoss.
- # It's also more numerically stable if we're using DeepSpeed 16 bits.
- _target_: flash_attn.losses.cross_entropy.CrossEntropyLoss
- inplace_backward: True # to save memory
- eval:
- log_on_step: True # 1 training epoch takes too long, we want to see metrics per train step
- callbacks:
- model_checkpoint:
- monitor: val/loss
- mode: min
- save_top_k: 3
- save_last: True
- every_n_train_steps: 1000
- dirpath: ${work_dir}/checkpoints/${oc.select:name,''}
- filename: step_{step}
- auto_insert_metric_name: False
- model_checkpoint_progress:
- _target_: src.callbacks.model_checkpoint.ModelCheckpointMine
- # fault_tolerant: True # The .pl_auto_save.ckpt doesn't get saved by all workers
- every_n_train_steps: 50000
- save_last: False
- save_top_k: -1 # Save all the checkpoints
- dirpath: ${..model_checkpoint.dirpath}
- filename: progress_step_{step}
- auto_insert_metric_name: False
- early_stopping: null
|