123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106 |
- # Run test with:
- # torchrun --no_python --nproc_per_node=8 pytest -q -s tests/modules/test_embedding_parallel.py
- import pytest
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from apex.transformer import parallel_state
- from einops import rearrange
- from flash_attn.modules.embedding import GPT2Embeddings, ParallelGPT2Embeddings
- is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8
- @pytest.mark.parametrize("dtype", [torch.float16] + ([torch.bfloat16] if is_sm8x else []))
- # @pytest.mark.parametrize('dtype', [torch.bfloat16])
- @pytest.mark.parametrize("world_size", [1, 2, 4, 8])
- # @pytest.mark.parametrize('world_size', [2])
- @pytest.mark.parametrize("sequence_parallel", [True, False])
- # @pytest.mark.parametrize('sequence_parallel', [False])
- @pytest.mark.parametrize("has_pos_emb", [True, False])
- # @pytest.mark.parametrize('has_pos_emb', [True])
- @pytest.mark.parametrize("dim", [1024])
- def test_embedding_parallel(dim, has_pos_emb, sequence_parallel, world_size, dtype):
- vocab_size = 50264
- seqlen = 2048
- assert vocab_size % world_size == 0
- assert dim % world_size == 0
- rtol, atol = (3e-3, 5e-2) if dtype == torch.bfloat16 else (3e-3, 3e-3)
- if not torch.distributed.is_initialized():
- torch.distributed.init_process_group(backend="nccl", init_method="env://")
- device = f"cuda:{torch.distributed.get_rank()}"
- assert world_size <= torch.distributed.get_world_size()
- parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
- rank = parallel_state.get_tensor_model_parallel_rank()
- # set seed
- torch.random.manual_seed(0)
- batch_size = 8
- seqlen = 1024
- assert (batch_size * seqlen) % world_size == 0
- input_ids_pt = torch.randint(0, vocab_size, (batch_size, seqlen), device=device)
- input_ids = input_ids_pt.detach().clone()
- model_pt = GPT2Embeddings(
- dim, vocab_size, seqlen if has_pos_emb else 0, device=device, dtype=dtype
- )
- model = ParallelGPT2Embeddings(
- dim,
- vocab_size,
- seqlen if has_pos_emb else 0,
- parallel_state.get_tensor_model_parallel_group(),
- sequence_parallel=sequence_parallel,
- device=device,
- dtype=dtype,
- )
- partition_vocab_size = vocab_size // world_size
- partition_dim = dim // world_size
- with torch.no_grad():
- model.word_embeddings.weight.copy_(
- model_pt.word_embeddings.weight[
- rank * partition_vocab_size : (rank + 1) * partition_vocab_size
- ]
- )
- if has_pos_emb:
- model.position_embeddings.weight.copy_(
- model_pt.position_embeddings.weight[
- :, rank * partition_dim : (rank + 1) * partition_dim
- ]
- )
- out = model(input_ids, combine_batch_seqlen_dim=True)
- out_pt = rearrange(model_pt(input_ids), "b s d -> (b s) d")
- partition_batch_dim = batch_size * seqlen // world_size
- assert torch.allclose(
- out,
- out_pt[rank * partition_batch_dim : (rank + 1) * partition_batch_dim]
- if sequence_parallel
- else out_pt,
- rtol=rtol,
- atol=atol,
- )
- g = torch.randn_like(out_pt)
- out_pt.backward(g)
- out.backward(
- g[rank * partition_batch_dim : (rank + 1) * partition_batch_dim] if sequence_parallel else g
- )
- parallel_state.destroy_model_parallel()
- assert torch.allclose(
- model.word_embeddings.weight.grad,
- model_pt.word_embeddings.weight.grad[
- rank * partition_vocab_size : (rank + 1) * partition_vocab_size
- ],
- rtol=rtol,
- atol=atol,
- )
- if has_pos_emb:
- assert torch.allclose(
- model.position_embeddings.weight.grad,
- model_pt.position_embeddings.weight.grad[
- :, rank * partition_dim : (rank + 1) * partition_dim
- ],
- rtol=rtol,
- atol=atol,
- )
|