123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236 |
- # Run test with:
- # torchrun --no_python --nproc_per_node=8 pytest -q -s tests/models/test_gpt_parallel.py
- import math
- import pytest
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from apex.transformer import parallel_state
- from einops import rearrange
- from flash_attn.losses.cross_entropy import CrossEntropyLoss
- from flash_attn.models.gpt import GPTLMHeadModel, shard_state_dict_tp
- from flash_attn.utils.distributed import allreduce_sequence_parallel_grad
- from transformers import GPT2Config
- is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8
- @pytest.mark.parametrize("dtype", [torch.float16] + ([torch.bfloat16] if is_sm8x else []))
- # @pytest.mark.parametrize('dtype', [torch.bfloat16])
- @pytest.mark.parametrize("world_size", [1, 2, 4, 8])
- # @pytest.mark.parametrize('world_size', [2])
- @pytest.mark.parametrize("sequence_parallel", [True, False])
- # @pytest.mark.parametrize('sequence_parallel', [False])
- @pytest.mark.parametrize("has_pos_emb", [True, False])
- # @pytest.mark.parametrize('has_pos_emb', [True])
- @pytest.mark.parametrize("dim", [1024])
- def test_gpt_parallel(dim, has_pos_emb, sequence_parallel, world_size, dtype):
- head_dim = 64
- assert dim % head_dim == 0
- num_heads = dim // head_dim
- assert num_heads % world_size == 0
- vocab_size = 50264
- assert vocab_size % world_size == 0
- num_layers = 2
- rtol, atol = (3e-3, 1e-1) if dtype == torch.bfloat16 else (3e-3, 1e-2)
- if not torch.distributed.is_initialized():
- torch.distributed.init_process_group(backend="nccl", init_method="env://")
- device = f"cuda:{torch.distributed.get_rank()}"
- assert world_size <= torch.distributed.get_world_size()
- parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
- rank = parallel_state.get_tensor_model_parallel_rank()
- process_group = parallel_state.get_tensor_model_parallel_group()
- # set seed
- torch.random.manual_seed(0)
- batch_size = 8
- seqlen = 1024
- assert (batch_size * seqlen) % world_size == 0
- input_ids = torch.randint(0, vocab_size, (batch_size, seqlen + 1), device=device)
- # We need to generate g here so that all processes get the same gradient,
- # as rank 0 will have an extra bias that changes the RNG.
- g = torch.randn(batch_size * seqlen, device=device)
- config = GPT2Config(
- n_embd=dim,
- n_head=num_heads,
- n_layer=num_layers,
- n_positions=seqlen if has_pos_emb else 0,
- vocab_size=50257,
- resid_pdrop=0.0,
- embd_pdrop=0.0,
- attn_pdrop=0.0,
- scale_attn_by_inverse_layer_idx=True,
- use_flash_attn=True,
- fused_mlp=True,
- fused_bias_fc=True,
- fused_dropout_add_ln=True,
- residual_in_fp32=True,
- rotary_emb_fraction=0.0 if has_pos_emb else 0.5,
- pad_vocab_size_multiple=8 * world_size,
- sequence_parallel=sequence_parallel,
- )
- config.vocab_size = math.ceil(config.vocab_size / (8 * world_size)) * (8 * world_size)
- model_pt = GPTLMHeadModel(config, device=device)
- def init_layer_norm(module):
- if isinstance(module, nn.LayerNorm):
- nn.init.normal_(module.weight)
- nn.init.normal_(module.bias)
- model_pt.apply(init_layer_norm)
- model = GPTLMHeadModel(config, process_group=process_group, device=device)
- total_nparams = sum(p.numel() for p in model_pt.parameters())
- sharded_nparams = sum(p.numel() for p in model.parameters())
- sharded_nparams_all = torch.empty(world_size, dtype=torch.long, device=device)
- torch.distributed.all_gather_into_tensor(
- sharded_nparams_all, torch.tensor([sharded_nparams], device=device), group=process_group
- )
- shared_nparams = sum(
- p.numel() for p in model.parameters() if getattr(p, "_shared_params", False)
- )
- shared_nparams_all = torch.empty(world_size, dtype=torch.long, device=device)
- torch.distributed.all_gather_into_tensor(
- shared_nparams_all, torch.tensor([shared_nparams], device=device), group=process_group
- )
- assert torch.all(shared_nparams_all == shared_nparams)
- assert total_nparams == (
- (sharded_nparams_all - shared_nparams_all).sum().item() + shared_nparams
- )
- # vocab_size has been rounded up here
- partition_vocab_size = config.vocab_size // world_size
- partition_dim = dim // world_size
- partition_hidden_dim = 4 * dim // world_size
- with torch.no_grad():
- model.load_state_dict(shard_state_dict_tp(model_pt.state_dict(), config, world_size, rank))
- model.tie_weights()
- with torch.autocast(device_type="cuda", dtype=dtype):
- out = model(input_ids[:, :-1]).logits
- if not sequence_parallel:
- out = rearrange(out, "b s d -> (b s) d")
- out_pt = rearrange(model_pt(input_ids[:, :-1]).logits, "b s d -> (b s) d")
- partition_batch_dim = batch_size * seqlen // world_size
- assert torch.allclose(
- out,
- out_pt[:, rank * partition_vocab_size : (rank + 1) * partition_vocab_size],
- rtol=rtol,
- atol=atol,
- )
- loss_fn = CrossEntropyLoss(inplace_backward=True, reduction="none", process_group=process_group)
- loss_fn_pt = CrossEntropyLoss(inplace_backward=True, reduction="none")
- loss = loss_fn(out, input_ids[:, 1:].flatten())
- loss_pt = loss_fn_pt(out_pt, input_ids[:, 1:].flatten())
- assert torch.allclose(loss, loss_pt, rtol=rtol, atol=atol)
- loss_pt.backward(g)
- loss.backward(g)
- allreduce_sequence_parallel_grad(model, process_group)
- parallel_state.destroy_model_parallel()
- grad_dict = shard_state_dict_tp(
- {k: v.grad for k, v in model_pt.named_parameters()}, config, world_size, rank
- )
- assert torch.allclose(
- model.transformer.embeddings.word_embeddings.weight.grad,
- grad_dict["transformer.embeddings.word_embeddings.weight"],
- rtol=rtol,
- atol=atol * 5,
- )
- if has_pos_emb:
- assert torch.allclose(
- model.transformer.embeddings.position_embeddings.weight.grad,
- grad_dict["transformer.embeddings.position_embeddings.weight"],
- rtol=rtol,
- atol=atol,
- )
- assert torch.allclose(
- model.transformer.ln_f.weight.grad,
- grad_dict["transformer.ln_f.weight"],
- rtol=rtol,
- atol=atol,
- )
- assert torch.allclose(
- model.transformer.ln_f.bias.grad, grad_dict["transformer.ln_f.bias"], rtol=rtol, atol=atol
- )
- for i in range(num_layers):
- assert torch.allclose(
- model.transformer.layers[i].mixer.Wqkv.weight.grad,
- grad_dict[f"transformer.layers.{i}.mixer.Wqkv.weight"],
- rtol=rtol,
- atol=atol * 10,
- )
- assert torch.allclose(
- model.transformer.layers[i].mixer.Wqkv.bias.grad,
- grad_dict[f"transformer.layers.{i}.mixer.Wqkv.bias"],
- rtol=rtol,
- atol=atol * 10,
- )
- assert torch.allclose(
- model.transformer.layers[i].mixer.out_proj.weight.grad,
- grad_dict[f"transformer.layers.{i}.mixer.out_proj.weight"],
- rtol=rtol,
- atol=atol * 10,
- )
- if rank == 0:
- assert torch.allclose(
- model.transformer.layers[i].mixer.out_proj.bias.grad,
- grad_dict[f"transformer.layers.{i}.mixer.out_proj.bias"],
- rtol=rtol,
- atol=atol * 5,
- )
- assert torch.allclose(
- model.transformer.layers[i].mlp.fc1.weight.grad,
- grad_dict[f"transformer.layers.{i}.mlp.fc1.weight"],
- rtol=rtol,
- atol=atol * 10,
- )
- assert torch.allclose(
- model.transformer.layers[i].mlp.fc1.bias.grad,
- grad_dict[f"transformer.layers.{i}.mlp.fc1.bias"],
- rtol=rtol,
- atol=atol * 10,
- )
- assert torch.allclose(
- model.transformer.layers[i].mlp.fc2.weight.grad,
- grad_dict[f"transformer.layers.{i}.mlp.fc2.weight"],
- rtol=rtol,
- atol=atol * 10,
- )
- if rank == 0:
- assert torch.allclose(
- model.transformer.layers[i].mlp.fc2.bias.grad,
- grad_dict[f"transformer.layers.{i}.mlp.fc2.bias"],
- rtol=rtol,
- atol=atol * 5,
- )
- assert torch.allclose(
- model.transformer.layers[i].norm1.weight.grad,
- grad_dict[f"transformer.layers.{i}.norm1.weight"],
- rtol=rtol,
- atol=atol,
- )
- assert torch.allclose(
- model.transformer.layers[i].norm1.bias.grad,
- grad_dict[f"transformer.layers.{i}.norm1.bias"],
- rtol=rtol,
- atol=atol,
- )
- assert torch.allclose(
- model.transformer.layers[i].norm2.weight.grad,
- grad_dict[f"transformer.layers.{i}.norm2.weight"],
- rtol=rtol,
- atol=atol,
- )
- assert torch.allclose(
- model.transformer.layers[i].norm2.bias.grad,
- grad_dict[f"transformer.layers.{i}.norm2.bias"],
- rtol=rtol,
- atol=atol,
- )
|