123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451 |
- /******************************************************************************
- * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
- ******************************************************************************/
- #pragma once
- #include <array>
- #include <algorithm>
- #include <cutlass/cutlass.h>
- #include <cute/layout.hpp>
- namespace flash {
- static constexpr int kMaxTileSize = 128;
- template <bool UseVarSeqLen_, bool UsePagedKV_, bool UseGQAPacking_> class SeqLenTraits {
- public:
- static_assert((!UsePagedKV_) || (UseVarSeqLen_ && UsePagedKV_), "PagedKV is only supported for VarSeqLen.");
- static_assert(!(UseVarSeqLen_ && UseGQAPacking_),
- "Variable sequence length with GQA parallelization not implemented yet.");
- // Total number of queries / keys. Unpadded.
- int sum_s = 0;
- // seq len offsets.
- int *cu_seq_len = nullptr;
- // actual seq len array.
- int *seq_used = nullptr;
- // seq len of the current batch.
- int actual_seq_len = -1;
- // Whether this is for fixed-seq-len or var-seq-len.
- static constexpr bool UseVarSeqLen = UseVarSeqLen_;
- static constexpr bool UseGQAPacking = UseGQAPacking_;
- static constexpr bool UsePagedKV = UsePagedKV_;
-
- using ShapeT = std::conditional_t<
- UseVarSeqLen,
- std::conditional_t<
- !UsePagedKV,
- cute::Shape<int32_t, int32_t, int32_t>,
- cute::Shape<int32_t, int32_t, int32_t, int32_t>>,
- std::conditional_t<
- UseGQAPacking,
- cute::Shape<int32_t, int32_t, int32_t, int32_t, int32_t>,
- cute::Shape<int32_t, int32_t, int32_t, int32_t>
- >
- >;
- using VirtualShapeT = std::conditional_t<
- UsePagedKV,
- cute::Shape<int32_t, int32_t, int32_t, int32_t>,
- ShapeT
- >;
- using StrideT = std::conditional_t<
- UseVarSeqLen,
- std::conditional_t<
- !UsePagedKV,
- cute::Shape<int64_t, _1, int64_t>,
- cute::Shape<int64_t, _1, int64_t, int64_t>>,
- std::conditional_t<
- UseGQAPacking,
- cute::Shape<int64_t, int64_t, _1, int64_t, int64_t>,
- cute::Shape<int64_t, _1, int64_t, int64_t>
- >
- >;
- using LayoutT = cute::Layout<ShapeT, StrideT>;
- using ShapeLseT = std::conditional_t<
- UseVarSeqLen,
- cute::Shape<int32_t, int32_t>,
- cute::Shape<int32_t, int32_t, int32_t>
- >;
- using StrideLseT = std::conditional_t<
- UseVarSeqLen,
- cute::Shape<int64_t, _1>,
- cute::Shape<int64_t, int64_t, _1>
- >;
- using LayoutLseT = cute::Layout<ShapeLseT, StrideLseT>;
- // Not used for varseqlen
- using ShapeOAccumT = std::conditional_t<
- UseGQAPacking,
- cute::Shape<int32_t, int32_t, int32_t, int32_t, int32_t, int32_t>,
- cute::Shape<int32_t, int32_t, int32_t, int32_t, int32_t>
- >;
- using StrideOAccumT = std::conditional_t<
- UseGQAPacking,
- cute::Shape<int64_t, int64_t, _1, int64_t, int64_t, int64_t>,
- cute::Shape<int64_t, _1, int64_t, int64_t, int64_t>
- >;
- using LayoutOAccumT = cute::Layout<ShapeOAccumT, StrideOAccumT>;
- using ShapeLseAccumT = cute::Shape<int32_t, int32_t, int32_t, int32_t>;
- using StrideLseAccumT = cute::Shape<int64_t, int64_t, int64_t, _1>;
- using LayoutLseAccumT = cute::Layout<ShapeLseAccumT, StrideLseAccumT>;
- CUTLASS_HOST SeqLenTraits() {}
- CUTLASS_HOST SeqLenTraits(
- int sum_s, int max_seq_len, int *cu_seq_len = nullptr, int *seq_used = nullptr):
- sum_s(sum_s), cu_seq_len(cu_seq_len), seq_used(seq_used), actual_seq_len(max_seq_len) {}
- CUTLASS_DEVICE void init(int bidb) {
- // TODO: add leftpad, seqlen_new for kv cache support
- if (seq_used) {
- actual_seq_len = seq_used[bidb];
- }
- }
- CUTLASS_DEVICE void init_no_guard(int bidb) {
- actual_seq_len = seq_used[bidb];
- }
- // Returns the layout of a tensor in MKHB format in global memory.
- // padded: only useful for var-seq-len for dq_accum and softmax_d.
- CUTLASS_HOST_DEVICE auto get_gmem_layout(
- int m, int k, int h, int b,
- int64_t m_stride, int64_t h_stride, int64_t b_stride,
- int page_block_size, int num_blocks,
- bool padded = false) const {
- static_assert(!UseVarSeqLen, "Specialize default implementation for VarSeqLen.");
- // static_assert(!UseGQAPacking, "Specialize default implementation for UseGQAPacking.");
- return make_layout(make_shape(m, k, h, b),
- make_stride(m_stride, cute::_1{}, h_stride, b_stride));
- }
- // Returns the layout of a tensor in MKHB format in virtual memory space
- // that is mapped to the global memory via the block table when paged attention is used
- CUTLASS_HOST_DEVICE VirtualShapeT get_virtual_shape(
- int m, int k, int h_k, int b, int h_h_k_ratio, bool padded) const {
- return make_shape(m, k, h_k, b);
- }
- // Returns the layout of a tensor in MKHB format in global memory.
- // padded: only useful for var-seq-len for dq_accum and softmax_d.
- // Overload that separates h into h_k and h/h_k.
- CUTLASS_HOST_DEVICE auto get_gmem_layout(
- int m, int k, int h_k, int b, int h_h_k_ratio,
- int64_t m_stride, int64_t h_stride, int64_t b_stride,
- bool padded = false) const {
- static_assert(!UseVarSeqLen, "Specialize default implementation for VarSeqLen.");
- static_assert(!UseGQAPacking, "Specialize default implementation for UseGQAPacking.");
- return make_layout(make_shape(m, k, h_k * h_h_k_ratio, b),
- make_stride(m_stride, cute::_1{}, h_stride, b_stride));
- }
- // Returns the layout of a tensor in MKHBT format in global memory,
- // where T is number of splits.
- CUTLASS_HOST_DEVICE auto get_oaccum_gmem_layout(
- int m, int k, int h, int b, int num_splits,
- int64_t m_stride, int64_t h_stride, int64_t b_stride, int64_t split_stride,
- bool padded = false) const {
- return make_layout(make_shape(m, k, h, b, num_splits),
- make_stride(m_stride, cute::_1{}, h_stride, b_stride, split_stride));
- }
- // Returns the layout of a tensor in MKHBT format in global memory,
- // where T is number of splits.
- // Overload that separates h into h_k and h/h_k.
- CUTLASS_HOST_DEVICE auto get_oaccum_gmem_layout(
- int m, int k, int h_k, int b, int h_h_k_ratio, int num_splits,
- int64_t m_stride, int64_t h_stride, int64_t b_stride, int64_t split_stride,
- bool padded = false) const {
- return make_layout(make_shape(m, k, h_k * h_h_k_ratio, b, num_splits),
- make_stride(m_stride, cute::_1{}, h_stride, b_stride, split_stride));
- }
- // Returns the layout of lse tensor in BHM format in global memory.
- // padded: only useful for var-seq-len for dq_accum and softmax_d.
- CUTLASS_HOST_DEVICE auto get_lse_gmem_layout(
- int m, int h, int b, bool padded = false) const {
- static_assert(!UseVarSeqLen, "Specialize default implementation for VarSeqLen.");
- return make_layout(make_shape(b, h, m),
- make_stride(int64_t(h * m), int64_t(m), cute::_1()));
- }
- // Returns the layout of lse tensor in TBHM format in global memory,
- // where T is number of splits.
- CUTLASS_HOST_DEVICE auto get_lseaccum_gmem_layout(
- int m, int h, int b, int num_splits, bool padded = false) const {
- return make_layout(make_shape(num_splits, b, h, m),
- make_stride(int64_t(b * h * m), int64_t(h * m), int64_t(m), cute::_1()));
- }
- template <typename MTensor, typename Shape>
- CUTLASS_DEVICE auto get_local_tile_tensor(
- const MTensor &m_tensor, const Shape &tile_shape,
- int bidh, int bidb, bool padded = false) const {
- auto g_tensor = local_tile(
- m_tensor(_, _, bidh, bidb), tile_shape, make_coord(_, _0{}));
- return g_tensor;
- }
- template <bool Is_split, typename MTensor, typename Shape>
- CUTLASS_DEVICE auto get_lse_local_tile_tensor(
- const MTensor &m_tensor, const Shape &tile_shape,
- int bidh, int bidb, int n_split_idx, bool padded = false) const {
- // m_tensor has shape (B, H, M) or (splits, B, H, M)
- // Expect tile shape (bM)
- // Returns g_tensor of shape = (bM, ceil_div(M,bM))
- if constexpr(!Is_split) {
- auto g_tensor = local_tile(m_tensor(bidb, bidh, _), tile_shape, make_coord(_));
- return g_tensor;
- } else {
- auto g_tensor = local_tile(m_tensor(n_split_idx, bidb, bidh, _), tile_shape, make_coord(_));
- return g_tensor;
- }
- }
- template <bool Is_split, typename MTensor, typename Shape>
- CUTLASS_DEVICE auto get_o_local_tile_tensor(
- const MTensor &m_tensor, const Shape &tile_shape,
- int bidh, int bidb, int split_idx, bool padded = false) const {
- // static_assert(!UseVarSeqLen, "Don't use get_o_local_tile_tensor with VarSeqLen.");
- // m_tensor has shape (M, K, H, B) or (M, K, H, B, splits)
- // Expect tile shape (bM, K)
- // Returns g_tensor of shape = (bM, K, ceil_div(M,bM))
- if constexpr(!Is_split) {
- auto g_tensor = local_tile(
- m_tensor(_, _, bidh, bidb), tile_shape, make_coord(_, _0{}));
- return g_tensor;
- } else {
- auto g_tensor = local_tile(
- m_tensor(_, _, bidh, bidb, split_idx), tile_shape, make_coord(_, _0{}));
- return g_tensor;
- }
- }
-
- };
- using FixedSeqLenTraits = SeqLenTraits<false, false, false>;
- using VarSeqLenTraits = SeqLenTraits<true, false, false>;
- using PagedSeqLenTraits = SeqLenTraits<true, true, false>;
- using FixedGQASeqLenTraits = SeqLenTraits<false, false, true>;
- template <>
- CUTLASS_DEVICE void VarSeqLenTraits::init(int bidb) {
- actual_seq_len =
- seq_used ? seq_used[bidb] : (cu_seq_len[bidb + 1] - cu_seq_len[bidb]);
- }
- template <>
- CUTLASS_DEVICE void FixedGQASeqLenTraits::init(int bidb) {
- // no op
- }
- // Returns the static layout of a var-seq-len tensor in global memory based on
- // max_seq_len and max_batch_size.
- // padded: only useful for var-seq-len for dq_accum and softmax_d.
- // When padded is True, use B_M + kMaxTileSize * B as the total B_M.
- template <>
- CUTLASS_HOST_DEVICE auto VarSeqLenTraits::get_gmem_layout(
- int m, int k, int h, int b,
- int64_t m_stride, int64_t h_stride, int64_t b_stride,
- int page_block_size, int num_blocks,
- bool padded) const {
- return make_layout(
- make_shape(sum_s + (padded ? kMaxTileSize * b : 0), k, h),
- make_stride(m_stride, cute::_1{}, h_stride));
- }
- template <>
- CUTLASS_HOST_DEVICE auto VarSeqLenTraits::get_gmem_layout(
- int m, int k, int h_k, int b, int h_h_k_ratio,
- int64_t m_stride, int64_t h_stride, int64_t b_stride,
- bool padded) const {
- return make_layout(
- make_shape(sum_s + (padded ? kMaxTileSize * b : 0), k, h_k * h_h_k_ratio),
- make_stride(m_stride, cute::_1{}, h_stride));
- }
- template <>
- CUTLASS_HOST_DEVICE VarSeqLenTraits::VirtualShapeT VarSeqLenTraits::get_virtual_shape(
- int m, int k, int h, int b, int h_h_k_ratio,
- bool padded) const {
- return make_shape(sum_s + (padded ? kMaxTileSize * b : 0), k, h);
- }
- // padded: only useful for var-seq-len for dq_accum and softmax_d.
- // When padded is True, use B_M + kMaxTileSize * B as the total B_M.
- //template <>
- template <>
- CUTLASS_HOST_DEVICE auto VarSeqLenTraits::get_lse_gmem_layout(
- int m, int h, int b, bool padded) const {
- return make_layout(
- make_shape(h, sum_s + (padded ? kMaxTileSize * b : 0)),
- make_stride(int64_t(sum_s + (padded ? kMaxTileSize * b : 0)), cute::_1()));
- }
- template <>
- template <typename MTensor, typename Shape>
- CUTLASS_DEVICE auto VarSeqLenTraits::get_local_tile_tensor(
- const MTensor &m_tensor, const Shape &tile_shape,
- int bidh, int bidb, bool padded) const {
- auto g_offset = local_tile(
- m_tensor(_, _, bidh),
- cute::make_shape(1, get<1>(tile_shape)),
- make_coord(cu_seq_len[bidb] + (padded ? kMaxTileSize * bidb : 0), _0{}));
- auto g_sequence = make_tensor(
- g_offset.data(),
- make_layout(
- cute::make_shape(actual_seq_len, get<1>(tile_shape)),
- g_offset.stride()
- ));
- auto g_tensor = local_tile(g_sequence, tile_shape, make_coord(_, _0{}));
- return g_tensor;
- }
- // TODO: restructure to not duplicate code
- template <>
- template <bool Is_split, typename MTensor, typename Shape>
- CUTLASS_DEVICE auto VarSeqLenTraits::get_o_local_tile_tensor(
- const MTensor &m_tensor, const Shape &tile_shape,
- int bidh, int bidb, int n_split_idx, bool padded) const {
- static_assert(!Is_split, "Don't currently support split kv kernel with VarSeqLenTraits");
- auto g_offset = local_tile(
- m_tensor(_, _, bidh),
- cute::make_shape(1, get<1>(tile_shape)),
- make_coord(cu_seq_len[bidb] + (padded ? kMaxTileSize * bidb : 0), _0{}));
- auto g_sequence = make_tensor(
- g_offset.data(),
- make_layout(
- cute::make_shape(actual_seq_len, get<1>(tile_shape)),
- g_offset.stride()
- ));
- auto g_tensor = local_tile(g_sequence, tile_shape, make_coord(_, _0{}));
- return g_tensor;
- }
- template <>
- template <bool Is_split, typename MTensor, typename Shape>
- CUTLASS_DEVICE auto VarSeqLenTraits::get_lse_local_tile_tensor(
- const MTensor &m_tensor, const Shape &tile_shape,
- int bidh, int bidb, int n_split_idx, bool padded) const {
- static_assert(!Is_split, "Don't currently support split kv kernel with VarSeqLenTraits");
- auto g_offset = local_tile(
- m_tensor(bidh, _), cute::make_shape(_1{}),
- make_coord(cu_seq_len[bidb] + (padded ? kMaxTileSize * bidb : 0)));
- auto g_sequence = make_tensor(
- g_offset.data(),
- make_layout(cute::make_shape(actual_seq_len), cute::make_shape(_1{})));
- auto g_tensor = local_tile(g_sequence, tile_shape, make_coord(_));
- return g_tensor;
- }
- // Returns layout of QO tensor in (M,H/HK,K,HK,B) format in global memory.
- template <>
- CUTLASS_HOST_DEVICE auto FixedGQASeqLenTraits::get_gmem_layout(
- int m, int k, int h_k, int b, int h_h_k_ratio,
- int64_t m_stride, int64_t h_stride, int64_t b_stride, bool padded) const {
- return make_layout(make_shape(m, h_h_k_ratio, k, h_k, b),
- make_stride(m_stride, h_stride, cute::_1{},
- h_stride * h_h_k_ratio, b_stride));
- }
- template <>
- CUTLASS_HOST_DEVICE FixedGQASeqLenTraits::VirtualShapeT FixedGQASeqLenTraits::get_virtual_shape(
- int m, int k, int h_k, int b, int h_h_k_ratio,
- bool padded) const {
- return make_shape(m, h_h_k_ratio, k, h_k, b);
- }
- // Returns layout of Oaccum tensor in (M,H/HK,K,HK,B,T) format in global memory.
- template <>
- CUTLASS_HOST_DEVICE auto FixedGQASeqLenTraits::get_oaccum_gmem_layout(
- int m, int k, int h_k, int b, int h_h_k_ratio, int num_splits,
- int64_t m_stride, int64_t h_stride, int64_t b_stride, int64_t split_stride,
- bool padded) const {
- return make_layout(make_shape(m, h_h_k_ratio, k, h_k, b, num_splits),
- make_stride(m_stride, h_stride, cute::_1{},
- h_stride * h_h_k_ratio, b_stride,
- split_stride));
- }
- template <>
- template <typename MTensor, typename Shape>
- CUTLASS_DEVICE auto FixedGQASeqLenTraits::get_local_tile_tensor(
- const MTensor &m_tensor, const Shape &tile_shape,
- int bidh_kv, int bidb, bool padded) const {
- // m_tensor has shape (M, H/H_K, K, H_K, B)
- // Expect tile_shape (bM/bH, bH, K)
- // Returns g_tensor of shape (bM/bH, bH, K, ceil_div(M,bM/bH), ceil_div(H/H_K,bH))
- auto g_tensor = local_tile(
- m_tensor(_, _, _, bidh_kv, bidb), tile_shape, make_coord(_, _, _0{}));
- return g_tensor;
- }
- template <>
- template <bool Is_split, typename MTensor, typename Shape>
- CUTLASS_DEVICE auto FixedGQASeqLenTraits::get_o_local_tile_tensor(
- const MTensor &m_tensor, const Shape &tile_shape,
- int bidh_kv, int bidb, int split_idx, bool padded) const {
- // m_tensor has shape (M, H/H_K, K, H_K, B) or (M, H/H_K, K, H_K, B, splits)
- // Expect tile_shape (bM/bH, bH, K)
- // Returns g_tensor of shape (bM/bH, bH, K, ceil_div(M,bM/bH), ceil_div(H/H_K,bH))
- if constexpr(!Is_split) {
- auto g_tensor = local_tile(
- m_tensor(_, _, _, bidh_kv, bidb), tile_shape, make_coord(_, _, _0{}));
- return g_tensor;
- } else {
- auto g_tensor = local_tile(
- m_tensor(_, _, _, bidh_kv, bidb, split_idx), tile_shape, make_coord(_, _, _0{}));
- return g_tensor;
- }
- }
- /////////////// PagedSeqLenTraits /////////////////
- // Returns the layout of a tensor in MKHB format in global memory.
- // padded: only useful for var-seq-len for dq_accum and softmax_d.
- template<>
- CUTLASS_HOST_DEVICE auto PagedSeqLenTraits::get_gmem_layout(
- int m, int k, int h, int b,
- int64_t m_stride, int64_t h_stride, int64_t b_stride,
- int page_block_size, int num_blocks,
- bool padded) const {
- return static_cast<PagedSeqLenTraits::LayoutT>(make_layout(make_shape((int)page_block_size, k, h, (int)num_blocks),
- make_stride(m_stride, cute::_1{}, h_stride, b_stride)));
- }
- template <>
- CUTLASS_DEVICE void PagedSeqLenTraits::init(int bidb) {
- actual_seq_len =
- seq_used ? seq_used[bidb] : (cu_seq_len[bidb + 1] - cu_seq_len[bidb]);
- }
- template <>
- template <typename MTensor, typename Shape>
- CUTLASS_DEVICE auto PagedSeqLenTraits::get_local_tile_tensor(
- const MTensor &m_tensor, const Shape &tile_shape,
- int bidh, int bidb, bool padded) const {
- auto g_slice = m_tensor(_, _, bidh, bidb); // = m_tensor[:,:, head_idx, batch_idx]
- auto g_seq_slice = make_tensor( // m_tensor[:actual_seq_len,:, head_idx, batch_idx]
- g_slice.data(),
- make_layout(cute::make_shape(actual_seq_len, get<1>(g_slice.layout().shape())), g_slice.layout().stride()));
- // slice up into tiles
- auto g_tensor = local_tile(
- g_seq_slice, tile_shape, make_coord(_, _0{}));
- return g_tensor;
- }
- ////////////////////////////////////////////////////////////////////////////////////////////////////
- } // namespace flash
|