1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342 |
- /******************************************************************************
- * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
- ******************************************************************************/
- // Include these 2 headers instead of torch/extension.h since we don't need all of the torch headers.
- #include <torch/python.h>
- #include <torch/nn/functional.h>
- #include <torch/version.h> // For TORCH_VERSION* macros
- #include <ATen/cuda/CUDAContext.h>
- #include <c10/cuda/CUDAGuard.h>
- #include <cutlass/numeric_types.h>
- #include "flash.h"
- #include "static_switch.h"
- #include "tile_size.h"
- #include "heuristics.h"
- // Copied from https://github.com/pytorch/pytorch/commit/7931eee5c5ebcdf468bff4d308510b03355cd909
- // This is so that we can pass in torch.dtype as a parameter to the function.
- #if TORCH_VERSION_MAJOR < 2 || (TORCH_VERSION_MAJOR == 2 && TORCH_VERSION_MINOR < 4)
- #include <pybind11/pybind11.h>
- #include <pybind11/stl.h>
- namespace pybind11::detail {
- template <>
- struct type_caster<at::ScalarType> {
- public:
- // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
- PYBIND11_TYPE_CASTER(at::ScalarType, _("torch.dtype"));
- // PYBIND11_TYPE_CASTER defines a member field called value. at::ScalarType
- // cannot be default-initialized, we provide this constructor to explicitly
- // initialize that field. The value doesn't matter as it will be overwritten
- // after a successful call to load.
- type_caster() : value(at::kFloat) {}
- bool load(handle src, bool) {
- PyObject* obj = src.ptr();
- if (THPDtype_Check(obj)) {
- value = reinterpret_cast<THPDtype*>(obj)->scalar_type;
- return true;
- }
- return false;
- }
- static handle cast(
- const at::ScalarType& src,
- return_value_policy /* policy */,
- handle /* parent */) {
- return Py_NewRef(torch::getTHPDtype(src));
- }
- };
- } // namespace pybind11::detail
- #endif
- #define CHECK_DEVICE(x) TORCH_CHECK(x.is_cuda(), #x " must be on CUDA")
- #define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
- #define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
- void set_params_fprop(Flash_fwd_params ¶ms,
- // sizes
- const size_t b,
- const size_t seqlen_q,
- const size_t seqlen_k,
- const size_t seqlen_q_rounded,
- const size_t seqlen_k_rounded,
- const size_t h,
- const size_t h_k,
- const size_t d,
- const size_t d_rounded,
- // device pointers
- const at::Tensor q,
- const at::Tensor k,
- const at::Tensor v,
- at::Tensor out,
- void *cu_seqlens_q_d,
- void *cu_seqlens_k_d,
- void *seqused_q,
- void *seqused_k,
- void *softmax_lse_d,
- float p_dropout,
- float softmax_scale,
- int window_size_left,
- int window_size_right,
- const float softcap=0.f,
- const int sm_margin=0) {
- // Reset the parameters
- params = {};
- params.is_bf16 = q.dtype() == torch::kBFloat16;
- params.is_e4m3 = q.dtype() == torch::kFloat8_e4m3fn;
- // Set the pointers and strides.
- params.q_ptr = q.data_ptr();
- params.k_ptr = k.data_ptr();
- params.v_ptr = v.data_ptr();
- // All stride are in elements, not bytes.
- params.q_row_stride = q.stride(-3);
- params.k_row_stride = k.stride(-3);
- params.v_row_stride = v.stride(-3);
- params.q_head_stride = q.stride(-2);
- params.k_head_stride = k.stride(-2);
- params.v_head_stride = v.stride(-2);
- params.v_dim_stride = v.stride(-1);
- params.o_ptr = out.data_ptr();
- params.o_row_stride = out.stride(-3);
- params.o_head_stride = out.stride(-2);
- if (cu_seqlens_q_d == nullptr) {
- params.q_batch_stride = q.stride(0);
- params.o_batch_stride = out.stride(0);
- }
- if (cu_seqlens_k_d == nullptr) {
- params.k_batch_stride = k.stride(0);
- params.v_batch_stride = v.stride(0);
- }
- params.cu_seqlens_q = static_cast<int *>(cu_seqlens_q_d);
- params.cu_seqlens_k = static_cast<int *>(cu_seqlens_k_d);
- params.seqused_q = static_cast<int *>(seqused_q);
- params.seqused_k = static_cast<int *>(seqused_k);
- // Softmax sum
- params.softmax_lse_ptr = softmax_lse_d;
- // Set the dimensions.
- params.b = b;
- params.h = h;
- params.h_k = h_k;
- params.seqlen_q = seqlen_q;
- params.seqlen_k = seqlen_k;
- params.seqlen_q_rounded = seqlen_q_rounded;
- params.seqlen_k_rounded = seqlen_k_rounded;
- params.d = d;
- params.d_rounded = d_rounded;
- // Set the different scale values.
- params.scale_softmax = softmax_scale;
- params.softcap = softcap;
- // Set this to probability of keeping an element to simplify things.
- params.p_dropout = 1.f - p_dropout;
- // Convert p from float to int so we don't have to convert the random uint to float to compare.
- // [Minor] We want to round down since when we do the comparison we use <= instead of <
- // params.p_dropout_in_uint = uint32_t(std::floor(params.p_dropout * 4294967295.0));
- // params.p_dropout_in_uint16_t = uint16_t(std::floor(params.p_dropout * 65535.0));
- params.p_dropout_in_uint8_t = uint8_t(std::floor(params.p_dropout * 255.0));
- params.rp_dropout = 1.f / params.p_dropout;
- TORCH_CHECK(p_dropout < 1.f);
- #ifdef FLASHATTENTION_DISABLE_DROPOUT
- TORCH_CHECK(p_dropout == 0.0f, "This flash attention build does not support dropout.");
- #endif
- // Causal is the special case where window_size_right == 0 and window_size_left < 0.
- // Local is the more general case where window_size_right >= 0 or window_size_left >= 0.
- params.is_causal = window_size_left < 0 && window_size_right == 0;
- params.is_local = (window_size_left >= 0 || window_size_right >= 0) && !params.is_causal;
- // TODO: check this
- if (window_size_left < 0 && window_size_right >= 0) { window_size_left = seqlen_k - 1; }
- if (window_size_left >= 0 && window_size_right < 0) { window_size_right = seqlen_q - 1; }
- params.window_size_left = window_size_left;
- params.window_size_right = window_size_right;
- params.arch = at::cuda::getCurrentDeviceProperties()->major * 10 + at::cuda::getCurrentDeviceProperties()->minor;
- params.num_sm = at::cuda::getCurrentDeviceProperties()->multiProcessorCount - sm_margin;
- #ifdef FLASHATTENTION_DISABLE_LOCAL
- TORCH_CHECK(!params.is_local, "This flash attention build does not support local attention.");
- #endif
- }
- void set_params_dgrad(Flash_bwd_params ¶ms,
- // sizes
- const size_t b,
- const size_t seqlen_q,
- const size_t seqlen_k,
- const size_t seqlen_q_rounded,
- const size_t seqlen_k_rounded,
- const size_t h,
- const size_t h_k,
- const size_t d,
- const size_t d_rounded,
- // device pointers
- const at::Tensor q,
- const at::Tensor k,
- const at::Tensor v,
- const at::Tensor out,
- const at::Tensor dout,
- at::Tensor dq,
- at::Tensor dk,
- at::Tensor dv,
- void *cu_seqlens_q_d,
- void *cu_seqlens_k_d,
- void *seqused_q,
- void *seqused_k,
- void *dq_accum_d,
- void *dk_accum_d,
- void *dv_accum_d,
- void *softmax_lse_d,
- void *dsoftmax_sum_d,
- float p_dropout,
- float softmax_scale,
- int window_size_left,
- int window_size_right,
- const float softcap=0.f,
- bool deterministic=false,
- int const sm_margin=0) {
- set_params_fprop(params,
- b, seqlen_q, seqlen_k, seqlen_q_rounded, seqlen_k_rounded, h, h_k, d, d_rounded,
- q, k, v, out,
- cu_seqlens_q_d,
- cu_seqlens_k_d,
- seqused_q,
- seqused_k,
- softmax_lse_d,
- p_dropout,
- softmax_scale,
- window_size_left,
- window_size_right,
- softcap,
- sm_margin);
- // Set the pointers and strides.
- params.do_ptr = dout.data_ptr();
- params.do_row_stride = dout.stride(-3);
- params.do_head_stride = dout.stride(-2);
- params.dq_ptr = dq.data_ptr();
- params.dk_ptr = dk.data_ptr();
- params.dv_ptr = dv.data_ptr();
- params.dq_row_stride = dq.stride(-3);
- params.dk_row_stride = dk.stride(-3);
- params.dv_row_stride = dv.stride(-3);
- params.dq_head_stride = dq.stride(-2);
- params.dk_head_stride = dk.stride(-2);
- params.dv_head_stride = dv.stride(-2);
- if (cu_seqlens_q_d == nullptr) {
- params.do_batch_stride = dout.stride(0);
- params.dq_batch_stride = dq.stride(0);
- params.dk_batch_stride = dk.stride(0);
- params.dv_batch_stride = dv.stride(0);
- }
- params.dq_accum_ptr = dq_accum_d;
- params.dk_accum_ptr = dk_accum_d;
- params.dv_accum_ptr = dv_accum_d;
- // Softmax sum
- params.dsoftmax_sum = dsoftmax_sum_d;
- params.deterministic = deterministic;
- }
- void run_mha_fwd(Flash_fwd_params ¶ms, cudaStream_t stream) {
- // HEADDIM_SWITCH(params.d, [&] {
- // run_mha_fwd_<cutlass::half_t, kHeadSize>(params, stream);
- // });
- TORCH_CHECK(params.num_splits >= 1);
- ARCH_SWITCH(params.arch, Arch, [&] {
- SPLIT_SWITCH(params.num_splits > 1, Split, [&] {
- PAGEDKV_SWITCH(params.page_table, PagedKV, [&] {
- PACKGQA_SWITCH(params.pack_gqa, PackGQA_, [&] {
- // Always enable PackGQA for Sm8x or PagedKV or Split to reduce compilation
- static constexpr bool PackGQA = PackGQA_ || Arch < 90 || PagedKV || Split;
- SOFTCAP_SWITCH(params.softcap > 0.0, Has_softcap, [&] {
- if (!params.is_e4m3) {
- if (params.is_bf16) {
- #ifndef FLASHATTENTION_DISABLE_HDIM64
- if (params.d <= 64) { return run_mha_fwd_<Arch, cutlass::bfloat16_t, 64, Split, PagedKV, Has_softcap, PackGQA>(params, stream); }
- #endif
- #ifndef FLASHATTENTION_DISABLE_HDIM96
- if (params.d <= 96) { return run_mha_fwd_<Arch, cutlass::bfloat16_t, 96, Split, PagedKV, Has_softcap, PackGQA>(params, stream); }
- #endif
- #ifndef FLASHATTENTION_DISABLE_HDIM128
- if (params.d <= 128) { return run_mha_fwd_<Arch, cutlass::bfloat16_t, 128, Split, PagedKV, Has_softcap, PackGQA>(params, stream); }
- #endif
- #ifndef FLASHATTENTION_DISABLE_HDIM192
- if (params.d <= 192) { return run_mha_fwd_<Arch, cutlass::bfloat16_t, 192, Split, PagedKV, Has_softcap, PackGQA>(params, stream); }
- #endif
- #ifndef FLASHATTENTION_DISABLE_HDIM256
- if (params.d <= 256) { return run_mha_fwd_<Arch, cutlass::bfloat16_t, 256, Split, PagedKV, Has_softcap, PackGQA>(params, stream); }
- #endif
- } else {
- #ifndef FLASHATTENTION_DISABLE_FP16
- #ifndef FLASHATTENTION_DISABLE_HDIM64
- if (params.d <= 64) { return run_mha_fwd_<Arch, cutlass::half_t, 64, Split, PagedKV, Has_softcap, PackGQA>(params, stream); }
- #endif
- #ifndef FLASHATTENTION_DISABLE_HDIM96
- if (params.d <= 96) { return run_mha_fwd_<Arch, cutlass::half_t, 96, Split, PagedKV, Has_softcap, PackGQA>(params, stream); }
- #endif
- #ifndef FLASHATTENTION_DISABLE_HDIM128
- if (params.d <= 128) { return run_mha_fwd_<Arch, cutlass::half_t, 128, Split, PagedKV, Has_softcap, PackGQA>(params, stream); }
- #endif
- #ifndef FLASHATTENTION_DISABLE_HDIM192
- if (params.d <= 192) { return run_mha_fwd_<Arch, cutlass::half_t, 192, Split, PagedKV, Has_softcap, PackGQA>(params, stream); }
- #endif
- #ifndef FLASHATTENTION_DISABLE_HDIM256
- if (params.d <= 256) { return run_mha_fwd_<Arch, cutlass::half_t, 256, Split, PagedKV, Has_softcap, PackGQA>(params, stream); }
- #endif
- #else
- TORCH_CHECK(false, "This flash attention build does not support FP16.");
- #endif
- }
- } else {
- #ifndef FLASHATTENTION_DISABLE_FP8
- #ifndef FLASHATTENTION_DISABLE_HDIM64
- if (params.d <= 64) { return run_mha_fwd_<90, cutlass::float_e4m3_t, 64, Split, PagedKV, Has_softcap, PackGQA>(params, stream); }
- #endif
- #ifndef FLASHATTENTION_DISABLE_HDIM96
- if (params.d <= 96) { return run_mha_fwd_<90, cutlass::float_e4m3_t, 96, Split, PagedKV, Has_softcap, PackGQA>(params, stream); }
- #endif
- #ifndef FLASHATTENTION_DISABLE_HDIM128
- if (params.d <= 128) { return run_mha_fwd_<90, cutlass::float_e4m3_t, 128, Split, PagedKV, Has_softcap, PackGQA>(params, stream); }
- #endif
- #ifndef FLASHATTENTION_DISABLE_HDIM192
- if (params.d <= 192) { return run_mha_fwd_<90, cutlass::float_e4m3_t, 192, Split, PagedKV, Has_softcap, PackGQA>(params, stream); }
- #endif
- #ifndef FLASHATTENTION_DISABLE_HDIM256
- if (params.d <= 256) { return run_mha_fwd_<90, cutlass::float_e4m3_t, 256, Split, PagedKV, Has_softcap, PackGQA>(params, stream); }
- #endif
- #else
- TORCH_CHECK(false, "This flash attention build does not support FP8.");
- #endif
- }
- });
- });
- });
- });
- });
- }
- void run_mha_fwd_combine(Flash_fwd_params ¶ms, cudaStream_t stream) {
- #ifndef FLASHATTENTION_DISABLE_SPLIT
- // If hdim is 96 or 192, it's faster to round them to 128 or 256 respectively
- // so that kBlockM is smaller and we have more parallelism.
- if (params.is_fp32) {
- if (params.d <= 64) {
- run_mha_fwd_combine_<float, float, 64>(params, stream);
- } else if (params.d <= 128) {
- run_mha_fwd_combine_<float, float, 128>(params, stream);
- } else {
- run_mha_fwd_combine_<float, float, 256>(params, stream);
- }
- } else if (params.is_bf16) {
- if (params.d <= 64) {
- run_mha_fwd_combine_<cutlass::bfloat16_t, float, 64>(params, stream);
- } else if (params.d <= 128) {
- run_mha_fwd_combine_<cutlass::bfloat16_t, float, 128>(params, stream);
- } else {
- run_mha_fwd_combine_<cutlass::bfloat16_t, float, 256>(params, stream);
- }
- } else {
- if (params.d <= 64) {
- run_mha_fwd_combine_<cutlass::half_t, float, 64>(params, stream);
- } else if (params.d <= 128) {
- run_mha_fwd_combine_<cutlass::half_t, float, 128>(params, stream);
- } else {
- run_mha_fwd_combine_<cutlass::half_t, float, 256>(params, stream);
- }
- }
- #else
- TORCH_CHECK(false, "This flash attention build does not support combine kernels.");
- #endif
- }
- inline bool get_pack_gqa(Flash_fwd_params const& params) {
- // Always enable PackGQA for Sm8x or PagedKV or Split to reduce compilation and binary size.
- // Has little effect on speed.
- if (params.arch < 90 || params.page_table || params.num_splits > 1) { return true; }
- #ifdef FLASHATTENTION_DISABLE_PACKGQA
- return false;
- #else
- // params.page_table must already be set
- if (params.h == params.h_k) { return false; }
- // This needs to match the kernel configs
- auto kBlockMN_kernel_args_sm90 = tile_size_fwd_sm90(params.d_rounded, params.is_causal, params.is_local, params.is_e4m3 ? 1 : 2 /*element_size*/, false /*v_colmajor*/, params.page_table, params.softcap > 0.f);
- int const kBlockM = std::get<0>(kBlockMN_kernel_args_sm90);
- return should_pack_gqa(params.cu_seqlens_q || params.seqused_q, params.seqlen_q, params.h / params.h_k, kBlockM);
- #endif
- }
- inline int get_num_splits(Flash_fwd_params const& params) {
- #ifdef FLASHATTENTION_DISABLE_SPLIT
- return 1;
- #else
- // Always enable PackGQA for Split
- // params.page_table must already be set
- // This needs to match the kernel configs
- bool varlen = params.cu_seqlens_q || params.cu_seqlens_k || params.seqused_q || params.seqused_k || params.leftpad_k;
- auto kBlockMN_kernel_args_sm90 = tile_size_fwd_sm90(params.d_rounded, params.is_causal, params.is_local, params.is_e4m3 ? 1 : 2 /*element_size*/, false /*v_colmajor*/, params.page_table, params.softcap > 0.f);
- // Strictly speaking we need to pass in (varlen && params.num_splits > 1) but num_splits
- // has not been set here. It's OK though because we might just underestimate kBlockN a bit
- auto kBlockMN_kernel_args_sm8x = tile_size_fwd_sm8x(params.arch == 86 || params.arch == 89, params.d_rounded, params.is_causal, params.is_local, params.is_e4m3 ? 1 : 2 /*element_size*/, params.page_table, varlen, params.softcap > 0.f, params.knew_ptr);
- int const kBlockM = params.arch >= 90 ? std::get<0>(kBlockMN_kernel_args_sm90) : std::get<0>(kBlockMN_kernel_args_sm8x);
- int const kBlockN = params.arch >= 90 ? std::get<1>(kBlockMN_kernel_args_sm90) : std::get<1>(kBlockMN_kernel_args_sm8x);
- int seqlen_q_packgqa = params.seqlen_q * (params.h / params.h_k);
- // If is_local, we're not going to load all of seqlen_k
- int const seqlen_k_loaded = !params.is_local
- ? params.seqlen_k
- : std::max(0, std::min(params.seqlen_k, params.window_size_right + params.window_size_left + 1 + kBlockM));
- int const num_n_blocks = (seqlen_k_loaded + kBlockN - 1) / kBlockN;
- int const num_m_blocks = (seqlen_q_packgqa + kBlockM - 1) / kBlockM;
- return num_splits_heuristic(params.b * (!params.pack_gqa ? params.h : params.h_k) * num_m_blocks, params.num_sm, num_n_blocks, 128);
- // return num_splits_heuristic(params.b * params.h_k * num_m_blocks, params.b * params.h_k,
- // params.num_sm, num_n_blocks, 128, params.d_rounded);
- #endif
- }
- inline int get_max_headdim() {
- #ifndef FLASHATTENTION_DISABLE_HDIM256
- return 256;
- #endif
- #ifndef FLASHATTENTION_DISABLE_HDIM192
- return 192;
- #endif
- #ifndef FLASHATTENTION_DISABLE_HDIM128
- return 128;
- #endif
- #ifndef FLASHATTENTION_DISABLE_HDIM96
- return 96;
- #endif
- #ifndef FLASHATTENTION_DISABLE_HDIM64
- return 64;
- #endif
- return 0;
- }
- inline int round_up_headdim(int head_size) {
- #ifndef FLASHATTENTION_DISABLE_HDIM64
- if (head_size <= 64) { return 64; }
- #endif
- #ifndef FLASHATTENTION_DISABLE_HDIM96
- if (head_size <= 96) { return 96; }
- #endif
- #ifndef FLASHATTENTION_DISABLE_HDIM128
- if (head_size <= 128) { return 128; }
- #endif
- #ifndef FLASHATTENTION_DISABLE_HDIM192
- if (head_size <= 192) { return 192; }
- #endif
- #ifndef FLASHATTENTION_DISABLE_HDIM256
- if (head_size <= 256) { return 256; }
- #endif
- return 256;
- }
- // b: batch_size
- // b_k: batch_size_k
- // s_q: seqlen_q
- // s_k: seqlen_k
- // s_k_new: seqlen_k_new
- // h: num_heads
- // h_k: num_heads_k
- // d: head_size
- std::vector<at::Tensor>
- mha_fwd(at::Tensor &q, // (b, s_q, h, d) or (total_q, h, d) if there is cu_seqlens_q
- const at::Tensor &k, // (b_k, s_k, h_k, d) or (total_k, h_k, d) if there is cu_seqlens_k or (num_pages, page_size, h_k, d) if there is page_table.
- const at::Tensor &v, // (b_k, s_k, h_k, d) or (total_k, h_k, d) if there is cu_seqlens_k or (num_pages, page_size, h_k, d) if there is page_table.
- std::optional<const at::Tensor> &k_new_, // (b, s_k_new, h_k, d) or (total_k_new, h_k, d) if there is cu_seqlens_k_new
- std::optional<const at::Tensor> &v_new_, // (b, s_k_new, h_k, d) or (total_k_new, h_k, d) if there is cu_seqlens_k_new
- std::optional<at::Tensor> &out_, // (b, s_q, h, d) or (total_q, h, d) if there is cu_seqlens_q
- std::optional<const at::Tensor> &cu_seqlens_q_, // b+1
- std::optional<const at::Tensor> &cu_seqlens_k_, // b+1
- std::optional<const at::Tensor> &cu_seqlens_k_new_, // b+1
- std::optional<const at::Tensor> &seqused_q_, // b. If given, only this many elements of each batch element's queries and outputs are used.
- std::optional<const at::Tensor> &seqused_k_, // b. If given, only this many elements of each batch element's keys are used.
- std::optional<int> max_seqlen_q_,
- // TODO: check if we need max_seqlen_k
- std::optional<int> max_seqlen_k_,
- std::optional<const at::Tensor> &page_table_, // (b_k, max_num_pages_per_seq)
- std::optional<const at::Tensor> &kv_batch_idx_, // b. indices to index into the KV cache
- std::optional<const at::Tensor> &leftpad_k_, // b
- std::optional<const at::Tensor> &rotary_cos_, // seqlen_ro x (rotary_dim / 2)
- std::optional<const at::Tensor> &rotary_sin_, // seqlen_ro x (rotary_dim / 2)
- std::optional<at::Tensor> &q_descale_, // (b, h_k), not (b, h)
- std::optional<at::Tensor> &k_descale_, // (b, h_k)
- std::optional<at::Tensor> &v_descale_, // (b, h_k)
- float const softmax_scale,
- bool is_causal,
- int window_size_left,
- int window_size_right,
- int sink_token_length,
- float const softcap,
- bool const is_rotary_interleaved, // if true, rotary combines indices 0 & 1, else indices 0 & rotary_dim / 2
- int num_splits,
- std::optional<bool> pack_gqa_,
- int const sm_margin
- ) {
- auto dprops = at::cuda::getCurrentDeviceProperties();
- bool is_sm8x = dprops->major >= 8;
- TORCH_CHECK(is_sm8x, "FlashAttention only supports Ampere GPUs or newer.");
- auto q_type = q.scalar_type();
- TORCH_CHECK(q_type == at::ScalarType::Half || q_type == at::ScalarType::BFloat16 || q_type == at::ScalarType::Float8_e4m3fn,
- "FlashAttention only supports fp16, bf16, and fp8_e4m3 data type");
- if (dprops->major < 9) {
- TORCH_CHECK(q_type == at::ScalarType::Half || q_type == at::ScalarType::BFloat16,
- "FlashAttention on Ampere/Ada cards only supports fp16 and bf16 data type");
- }
- TORCH_CHECK(k.scalar_type() == q_type, "query and key must have the same dtype");
- TORCH_CHECK(v.scalar_type() == q_type, "query and value must have the same dtype");
- CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
- TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
- TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
- TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
- at::Tensor page_table;
- const bool paged_KV = page_table_.has_value();
- if (paged_KV) {
- page_table = page_table_.value();
- CHECK_DEVICE(page_table);
- TORCH_CHECK(page_table.dtype() == torch::kInt32, "page_table must have dtype torch.int32");
- TORCH_CHECK(page_table.stride(-1) == 1, "page_table must have contiguous last dimension");
- }
- at::Tensor cu_seqlens_q;
- bool const is_varlen_q = cu_seqlens_q_.has_value();
- if (is_varlen_q) {
- cu_seqlens_q = cu_seqlens_q_.value();
- CHECK_DEVICE(cu_seqlens_q); CHECK_CONTIGUOUS(cu_seqlens_q);
- TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32, "cu_seqlens_q must have dtype torch.int32");
- TORCH_CHECK(max_seqlen_q_.has_value(), "max_seqlen_q must be provided if cu_seqlens_q is provided");
- }
- at::Tensor cu_seqlens_k;
- bool const is_varlen_k = cu_seqlens_k_.has_value();
- if (is_varlen_k) {
- cu_seqlens_k = cu_seqlens_k_.value();
- CHECK_DEVICE(cu_seqlens_k); CHECK_CONTIGUOUS(cu_seqlens_k);
- TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32, "cu_seqlens_k must have dtype torch.int32");
- TORCH_CHECK(max_seqlen_k_.has_value(), "max_seqlen_k must be provided if cu_seqlens_k is provided");
- TORCH_CHECK(!paged_KV, "If cu_seqlens_k is passed in, then page table is not supported");
- TORCH_CHECK(!kv_batch_idx_.has_value(), "If cu_seqlens_k is passed in, then page table is not supported");
- }
- // This is what we will template on
- bool const is_varlen = is_varlen_q || is_varlen_k || seqused_q_.has_value() || seqused_k_.has_value() || leftpad_k_.has_value();
- #ifdef FLASHATTENTION_DISABLE_VARLEN
- TORCH_CHECK(!is_varlen, "This flash attention build does not support varlen.");
- #endif
- auto const sizes = q.sizes();
- const int batch_size = !is_varlen_q ? sizes[0] : cu_seqlens_q.size(0) - 1;
- int seqlen_q = !is_varlen_q ? sizes[1] : max_seqlen_q_.value();
- int total_q = !is_varlen_q ? batch_size * sizes[1] : sizes[0];
- int num_heads = q.size(-2);
- int const head_size = q.size(-1);
- int const max_num_pages_per_seq = !paged_KV ? 0 : page_table.size(1);
- int const num_pages = !paged_KV ? 0 : k.size(0);
- int const page_size = !paged_KV ? 1 : k.size(1);
- int const seqlen_k = !is_varlen_k ? (!paged_KV ? k.size(1) : max_num_pages_per_seq * page_size) : max_seqlen_k_.value();
- int const total_k = !is_varlen_k ? batch_size * k.size(1) : k.size(0);
- int const num_heads_k = k.size(-2);
- int const batch_size_k = !paged_KV ? (!is_varlen_k ? k.size(0) : cu_seqlens_k.size(0) - 1) : page_table.size(0);
- if (!kv_batch_idx_.has_value()) {
- TORCH_CHECK(batch_size == batch_size_k, "batch_size must be equal to batch_size_k");
- }
- int const max_headdim = get_max_headdim();
- TORCH_CHECK(head_size <= max_headdim, "FlashAttention forward only supports head dimension at most " + std::to_string(max_headdim));
- TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
- // This needs to go before kBlockM & kBlockN since we rely on the correct window_size and is_causal to set kBlockM
- // TODO: check this
- if (window_size_left >= seqlen_k - 1) { window_size_left = -1; }
- if (window_size_right >= seqlen_q - 1) { window_size_right = -1; }
- if (is_causal) { window_size_right = 0; }
- // There's a case where is_causal=false, window_size=(-1, 0). Then set_params_fprop will set params.is_causal=true.
- // If we don't have is_causal here matching params.is_causal, we might get the wrong kBlockM.
- is_causal = window_size_left < 0 && window_size_right == 0;
- if (!is_varlen_q) {
- CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size);
- } else {
- CHECK_SHAPE(q, total_q, num_heads, head_size);
- CHECK_SHAPE(cu_seqlens_q, batch_size + 1);
- }
- if (!paged_KV) {
- if (!is_varlen_k) {
- CHECK_SHAPE(k, batch_size_k, seqlen_k, num_heads_k, head_size);
- CHECK_SHAPE(v, batch_size_k, seqlen_k, num_heads_k, head_size);
- } else {
- CHECK_SHAPE(k, total_k, num_heads_k, head_size);
- CHECK_SHAPE(v, total_k, num_heads_k, head_size);
- CHECK_SHAPE(cu_seqlens_k, batch_size + 1);
- }
- } else {
- CHECK_SHAPE(k, num_pages, page_size, num_heads_k, head_size);
- CHECK_SHAPE(v, num_pages, page_size, num_heads_k, head_size);
- CHECK_SHAPE(page_table, batch_size_k, max_num_pages_per_seq);
- }
- if (seqused_q_.has_value()){
- auto seqused_q = seqused_q_.value();
- TORCH_CHECK(seqused_q.dtype() == torch::kInt32, "seqused_q must have dtype int32");
- CHECK_DEVICE(seqused_q); CHECK_CONTIGUOUS(seqused_q);
- CHECK_SHAPE(seqused_q, batch_size);
- }
- if (seqused_k_.has_value()) {
- auto seqused_k = seqused_k_.value();
- TORCH_CHECK(seqused_k.dtype() == torch::kInt32, "seqused_k must have dtype int32");
- CHECK_DEVICE(seqused_k); CHECK_CONTIGUOUS(seqused_k);
- CHECK_SHAPE(seqused_k, batch_size);
- }
- int const alignment = q_type == torch::kFloat8_e4m3fn ? 16 : 8;
- TORCH_CHECK(head_size % alignment == 0, "head_size should be a multiple of " + std::to_string(alignment));
- auto opts = q.options();
- auto out_type = q_type == at::ScalarType::Float8_e4m3fn ? at::ScalarType::BFloat16 : q_type;
- at::Tensor out;
- if (out_.has_value()) {
- out = out_.value();
- TORCH_CHECK(out.scalar_type() == out_type, "For FP16/BF16 input, output must have the same dtype as inputs. For FP8 input, output must have dtype BF16");
- CHECK_DEVICE(out);
- TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension");
- if (!is_varlen_q) {
- CHECK_SHAPE(out, batch_size, seqlen_q, num_heads, head_size);
- } else {
- CHECK_SHAPE(out, total_q, num_heads, head_size);
- }
- } else {
- out = torch::empty_like(q, opts.dtype(out_type));
- }
- auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
- int const head_size_rounded = round_up_headdim(head_size);
- int const seqlen_q_rounded = round_multiple(seqlen_q, 128);
- int const seqlen_k_rounded = round_multiple(seqlen_k, 128);
- // Otherwise the kernel will be launched from cuda:0 device
- // Cast to char to avoid compiler warning about narrowing
- at::cuda::CUDAGuard device_guard{(char)q.get_device()};
- at::Tensor softmax_lse;
- if (!is_varlen_q) {
- softmax_lse = torch::empty({batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat));
- } else {
- softmax_lse = torch::empty({num_heads, total_q}, opts.dtype(at::kFloat));
- }
- Flash_fwd_params params;
- set_params_fprop(params,
- batch_size,
- seqlen_q, seqlen_k,
- seqlen_q_rounded, seqlen_k_rounded,
- num_heads, num_heads_k,
- head_size, head_size_rounded,
- q, k, v, out,
- !is_varlen_q ? nullptr : cu_seqlens_q.data_ptr(),
- !is_varlen_k ? nullptr : cu_seqlens_k.data_ptr(),
- seqused_q_.has_value() ? seqused_q_.value().data_ptr() : nullptr,
- seqused_k_.has_value() ? seqused_k_.value().data_ptr() : nullptr,
- softmax_lse.data_ptr(),
- /*p_dropout=*/0.f,
- softmax_scale,
- window_size_left,
- window_size_right,
- softcap,
- sm_margin);
- params.total_q = total_q;
- params.total_k = total_k;
- params.sink_token_length = sink_token_length;
- params.b_k = batch_size_k;
- if (paged_KV) {
- params.page_table = page_table.data_ptr<int>();
- params.page_table_batch_stride = page_table.stride(0);
- }
- params.page_size = page_size;
- params.num_pages = num_pages;
- params.num_splits = num_splits <= 0 ? get_num_splits(params) : num_splits;
- params.pack_gqa = pack_gqa_.has_value() ? pack_gqa_.value() : get_pack_gqa(params);
- if (k_new_.has_value()) {
- at::Tensor k_new, v_new;
- TORCH_CHECK(v_new_.has_value(), "If k_new is supplied, v_new must also be passed in");
- TORCH_CHECK(seqused_k_.has_value(), "If k_new is supplied, seqlens_k must also be passed in");
- TORCH_CHECK(seqlen_q <= seqlen_k, "If k_new is supplied, it must have seqlen <= the seqlen of the KV cache");
- at::Tensor cu_seqlens_k_new;
- bool const is_varlen_k_new = cu_seqlens_k_new_.has_value();
- if (is_varlen_k_new) {
- cu_seqlens_k_new = cu_seqlens_k_new_.value();
- CHECK_DEVICE(cu_seqlens_k_new); CHECK_CONTIGUOUS(cu_seqlens_k_new);
- TORCH_CHECK(cu_seqlens_k_new.dtype() == torch::kInt32, "cu_seqlens_k_new must have dtype torch.int32");
- }
- k_new = k_new_.value();
- v_new = v_new_.value();
- TORCH_CHECK(k_new.dtype() == q_type, "k_new must have the same dtype as query");
- TORCH_CHECK(v_new.dtype() == q_type, "v_new must have the same dtype as query");
- CHECK_DEVICE(k_new); CHECK_DEVICE(v_new);
- TORCH_CHECK(k_new.stride(-1) == 1, "k_new tensor must have contiguous last dimension");
- TORCH_CHECK(v_new.stride(-1) == 1, "v_new tensor must have contiguous last dimension");
- // We don't need max_seqlen_k_new, so seqlen_k_new can be whatever when is_varlen_k_new
- int seqlen_k_new = !is_varlen_k_new ? k_new.size(1) : 0;
- int total_k_new = !is_varlen_k_new ? batch_size * k_new.size(1): k_new.size(0);
- if (!is_varlen_k_new) {
- CHECK_SHAPE(k_new, batch_size, seqlen_k_new, num_heads_k, head_size);
- CHECK_SHAPE(v_new, batch_size, seqlen_k_new, num_heads_k, head_size);
- } else {
- CHECK_SHAPE(k_new, total_k_new, num_heads_k, head_size);
- CHECK_SHAPE(v_new, total_k_new, num_heads_k, head_size);
- CHECK_SHAPE(cu_seqlens_k_new, batch_size + 1);
- }
- params.seqlen_knew = seqlen_k_new;
- params.total_knew = total_k_new;
- params.knew_ptr = k_new.data_ptr();
- params.vnew_ptr = v_new.data_ptr();
- // All stride are in elements, not bytes.
- params.knew_row_stride = k_new.stride(-3);
- params.vnew_row_stride = v_new.stride(-3);
- params.knew_head_stride = k_new.stride(-2);
- params.vnew_head_stride = v_new.stride(-2);
- if (!is_varlen_k_new) {
- params.knew_batch_stride = k_new.stride(0);
- params.vnew_batch_stride = v_new.stride(0);
- }
- if (is_varlen_k_new) {
- params.cu_seqlens_knew = static_cast<int*>(cu_seqlens_k_new.data_ptr());
- }
- }
- if (leftpad_k_.has_value()) {
- auto leftpad_k = leftpad_k_.value();
- TORCH_CHECK(leftpad_k.dtype() == torch::kInt32, "leftpad_k must have dtype int32");
- CHECK_DEVICE(leftpad_k); CHECK_CONTIGUOUS(leftpad_k);
- CHECK_SHAPE(leftpad_k, batch_size);
- params.leftpad_k = static_cast<int *>(leftpad_k.data_ptr());
- }
- if (rotary_cos_.has_value()) {
- TORCH_CHECK(k_new_.has_value(), "If rotary cos/sin are provided, new key / value to be appended to KV cache must also be provided");
- auto rotary_cos = rotary_cos_.value();
- CHECK_DEVICE(rotary_cos); CHECK_CONTIGUOUS(rotary_cos);
- params.rotary_dim = rotary_cos.size(1) * 2;
- TORCH_CHECK(params.rotary_dim <= head_size, "rotary_dim must be <= headdim");
- TORCH_CHECK(params.rotary_dim % 16 == 0, "Only rotary dimensions divisible by 16 are currently supported");
- const int seqlen_ro = rotary_cos.size(0);
- if (paged_KV) {
- TORCH_CHECK(seqlen_ro >= seqlen_k, "cos/sin seqlen must be at least the seqlen of KV cache");
- }
- CHECK_SHAPE(rotary_cos, seqlen_ro, params.rotary_dim / 2);
- TORCH_CHECK(rotary_cos.scalar_type() == q_type, "rotary_cos must have the same dtype as query");
- TORCH_CHECK(rotary_sin_.has_value(), "If rotary cos is provided, rotary sin must also be provided");
- auto rotary_sin = rotary_sin_.value();
- CHECK_DEVICE(rotary_sin); CHECK_CONTIGUOUS(rotary_sin);
- CHECK_SHAPE(rotary_sin, seqlen_ro, params.rotary_dim / 2);
- TORCH_CHECK(rotary_sin.scalar_type() == q_type, "rotary_cos must have the same dtype as query");
- params.rotary_cos_ptr = rotary_cos.data_ptr();
- params.rotary_sin_ptr = rotary_sin.data_ptr();
- params.is_rotary_interleaved = is_rotary_interleaved;
- } else {
- params.rotary_dim = 0;
- }
- if (kv_batch_idx_.has_value()) {
- auto kv_batch_idx = kv_batch_idx_.value();
- CHECK_DEVICE(kv_batch_idx); CHECK_CONTIGUOUS(kv_batch_idx);
- TORCH_CHECK(kv_batch_idx.scalar_type() == torch::kInt32, "kv_batch_idx must have dtype int32");
- params.kv_batch_idx = reinterpret_cast<int *>(kv_batch_idx.data_ptr());
- }
- at::Tensor out_accum, softmax_lse_accum;
- auto outaccum_type = at::ScalarType::Float;
- if (params.num_splits > 1) {
- TORCH_CHECK(params.num_splits <= 256, "num_splits > 256 not supported");
- if (!is_varlen_q) {
- out_accum = torch::empty({params.num_splits, batch_size, num_heads, seqlen_q, head_size}, opts.dtype(outaccum_type));
- softmax_lse_accum = torch::empty({params.num_splits, batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat));
- params.oaccum_batch_stride = out_accum.stride(1);
- params.lseaccum_batch_stride = softmax_lse_accum.stride(1);
- } else {
- out_accum = torch::empty({params.num_splits, num_heads, total_q, head_size}, opts.dtype(outaccum_type));
- softmax_lse_accum = torch::empty({params.num_splits, num_heads, total_q}, opts.dtype(at::kFloat));
- }
- params.is_fp32 = false;
- params.oaccum_ptr = out_accum.data_ptr();
- params.softmax_lseaccum_ptr = softmax_lse_accum.data_ptr();
- params.oaccum_split_stride = out_accum.stride(0);
- params.oaccum_row_stride = out_accum.stride(-2);
- params.oaccum_head_stride = out_accum.stride(-3);
- params.lseaccum_split_stride = softmax_lse_accum.stride(0);
- params.lseaccum_head_stride = softmax_lse_accum.stride(-2);
- }
- at::Tensor tile_count_semaphore;
- // We don't use the persistent scheduler if Split and not Varlen
- bool const persistent_scheduler = params.arch >= 90
- ? (((params.is_causal || params.is_local) && (params.num_splits == 1)) || is_varlen)
- : ((params.is_causal && !is_varlen) || (is_varlen && params.num_splits > 1));
- if (persistent_scheduler) {
- tile_count_semaphore = torch::zeros({1}, opts.dtype(torch::kInt32));
- params.tile_count_semaphore = tile_count_semaphore.data_ptr<int>();
- } else {
- params.tile_count_semaphore = nullptr;
- }
- if (q_type == at::ScalarType::Float8_e4m3fn) {
- if (q_descale_.has_value()) {
- auto q_descale = q_descale_.value();
- CHECK_DEVICE(q_descale);
- CHECK_SHAPE(q_descale, batch_size, num_heads_k);
- params.q_descale_ptr = q_descale.data_ptr<float>();
- params.q_descale_batch_stride = q_descale.stride(0);
- params.q_descale_head_stride = q_descale.stride(1);
- } else {
- params.q_descale_ptr = nullptr;
- }
- if (k_descale_.has_value()) {
- auto k_descale = k_descale_.value();
- CHECK_DEVICE(k_descale);
- CHECK_SHAPE(k_descale, batch_size, num_heads_k);
- params.k_descale_ptr = k_descale.data_ptr<float>();
- params.k_descale_batch_stride = k_descale.stride(0);
- params.k_descale_head_stride = k_descale.stride(1);
- } else {
- params.k_descale_ptr = nullptr;
- }
- if (v_descale_.has_value()) {
- auto v_descale = v_descale_.value();
- CHECK_DEVICE(v_descale);
- CHECK_SHAPE(v_descale, batch_size, num_heads_k);
- params.v_descale_ptr = v_descale.data_ptr<float>();
- params.v_descale_batch_stride = v_descale.stride(0);
- params.v_descale_head_stride = v_descale.stride(1);
- } else {
- params.v_descale_ptr = nullptr;
- }
- }
- #ifdef FLASHATTENTION_DISABLE_LOCAL
- TORCH_CHECK(!params.is_local, "This flash attention build does not support local attention.");
- #endif
- #ifdef FLASHATTENTION_DISABLE_SOFTCAP
- TORCH_CHECK(params.softcap == 0.0, "This flash attention build does not support tanh softcapping.");
- #endif
- #ifdef FLASHATTENTION_DISABLE_SPLIT
- TORCH_CHECK(params.num_splits == 1, "This flash attention build does not support splits.");
- #endif
- #ifdef FLASHATTENTION_DISABLE_PACKGQA
- TORCH_CHECK(!params.pack_gqa || params.arch < 90 || params.page_table || params.num_splits > 1, "This flash attention build does not support pack_gqa.");
- #endif
- #ifdef FLASHATTENTION_DISABLE_PAGEDKV
- TORCH_CHECK(!paged_KV, "This flash attention build does not support paged KV.");
- #endif
- #ifdef FLASHATTENTION_DISABLE_APPENDKV
- TORCH_CHECK(!k_new_.has_value(), "This flash attention build does not support appending KV.");
- #endif
- if (total_q > 0 && (total_k + params.total_knew) > 0 && num_heads_k > 0) {
- auto stream = at::cuda::getCurrentCUDAStream().stream();
- run_mha_fwd(params, stream);
- if (params.num_splits > 1) {
- if (out_type == at::ScalarType::BFloat16) {
- // Since we want output in BF16. Otherwise fwd_combine will output to FP16
- params.is_bf16 = true;
- }
- // Unless there's seqused_q, for the purpose of attn_combine, we can just treat it as batch=1
- // and seqlen = total_q, and don't need to dispatch to Varlen there.
- // if (is_varlen_q && !seqused_q_.has_value()) {
- if (is_varlen_q) {
- params.b = 1;
- params.seqlen_q = total_q;
- }
- run_mha_fwd_combine(params, stream);
- }
- } else if (total_q > 0 && num_heads_k > 0) {
- // If seqlen_k == 0, then we have an empty tensor. We need to set the output to 0.
- out.zero_();
- softmax_lse.fill_(std::numeric_limits<float>::infinity());
- }
- // return {out, softmax_lse};
- return {out, softmax_lse, out_accum, softmax_lse_accum};
- }
- void run_mha_bwd(Flash_bwd_params ¶ms, cudaStream_t stream) {
- #ifndef FLASHATTENTION_DISABLE_BACKWARD
- // FP16_SWITCH(!params.is_bf16, [&] {
- // HEADDIM_SWITCH(params.d, [&] {
- // run_mha_bwd_<elem_type, kHeadDim>(params, stream);
- // });
- // });
- ARCH_SWITCH(params.arch, Arch, [&] {
- SOFTCAP_SWITCH(params.softcap > 0.f, Has_softcap, [&] {
- if (!params.is_bf16) {
- #ifndef FLASHATTENTION_DISABLE_FP16
- #ifndef FLASHATTENTION_DISABLE_HDIM64
- if (params.d <= 64) { return run_mha_bwd_<Arch, cutlass::half_t, 64, Has_softcap>(params, stream); }
- #endif
- #ifndef FLASHATTENTION_DISABLE_HDIM96
- if (params.d <= 96) { return run_mha_bwd_<Arch, cutlass::half_t, 96, Has_softcap>(params, stream); }
- #endif
- #ifndef FLASHATTENTION_DISABLE_HDIM128
- if (params.d <= 128) { return run_mha_bwd_<Arch, cutlass::half_t, 128, Has_softcap>(params, stream); }
- #endif
- #ifndef FLASHATTENTION_DISABLE_HDIM192
- if (params.d <= 192) { return run_mha_bwd_<Arch, cutlass::half_t, 192, Has_softcap>(params, stream); }
- #endif
- #ifndef FLASHATTENTION_DISABLE_HDIM256
- if (params.d <= 256) { return run_mha_bwd_<Arch, cutlass::half_t, 256, Has_softcap>(params, stream); }
- #endif
- #else
- TORCH_CHECK(false, "This flash attention build does not support FP16.");
- #endif
- } else {
- #ifndef FLASHATTENTION_DISABLE_HDIM64
- if (params.d <= 64) { return run_mha_bwd_<Arch, cutlass::bfloat16_t, 64, Has_softcap>(params, stream); }
- #endif
- #ifndef FLASHATTENTION_DISABLE_HDIM96
- if (params.d <= 96) { return run_mha_bwd_<Arch, cutlass::bfloat16_t, 96, Has_softcap>(params, stream); }
- #endif
- #ifndef FLASHATTENTION_DISABLE_HDIM128
- if (params.d <= 128) { return run_mha_bwd_<Arch, cutlass::bfloat16_t, 128, Has_softcap>(params, stream); }
- #endif
- #ifndef FLASHATTENTION_DISABLE_HDIM192
- if (params.d <= 192) { return run_mha_bwd_<Arch, cutlass::bfloat16_t, 192, Has_softcap>(params, stream); }
- #endif
- #ifndef FLASHATTENTION_DISABLE_HDIM256
- if (params.d <= 256) { return run_mha_bwd_<Arch, cutlass::bfloat16_t, 256, Has_softcap>(params, stream); }
- #endif
- }
- });
- });
- #endif
- }
- // b: batch_size
- // s_q: seqlen_q
- // s_k: seqlen_k
- // h: num_heads
- // h_k: num_heads_k
- // d: head_size
- std::vector<at::Tensor> mha_bwd(
- const at::Tensor &dout, // (b, s_q, h, d) or (total_q, h, d) if there is cu_seqlens_q
- const at::Tensor &q, // (b, s_q, h, d) or (total_q, h, d) if there is cu_seqlens_q
- const at::Tensor &k, // (b, s_k, h_k, d) or (total_k, h_k, d) if there is cu_seqlens_k
- const at::Tensor &v, // (b, s_k, h_k, d) or (total_k, h_k, d) if there is cu_seqlens_k
- const at::Tensor &out, // (b, s_q, h, d) or (total_q, h, d) if there is cu_seqlens_q
- const at::Tensor &softmax_lse, // (b, h, s_q) or (h, total_q) if there is cu_seqlens_q
- std::optional<at::Tensor> &dq_, // (b, s_q, h, d) or (total_q, h, d) if there is cu_seqlens_q
- std::optional<at::Tensor> &dk_, // (b, s_k, h_k, d) or (total_k, h_k, d) if there is cu_seqlens_k
- std::optional<at::Tensor> &dv_, // (b, s_k, h_k, d) or (total_k, h_k, d) if there is cu_seqlens_k
- std::optional<const at::Tensor> &cu_seqlens_q_, // b+1
- std::optional<const at::Tensor> &cu_seqlens_k_, // b+1
- std::optional<const at::Tensor> &seqused_q_, // b. If given, only this many elements of each batch element's queries and outputs are used.
- std::optional<const at::Tensor> &seqused_k_, // b. If given, only this many elements of each batch element's keys are used.
- std::optional<int> max_seqlen_q_,
- std::optional<int> max_seqlen_k_,
- float const softmax_scale,
- bool is_causal,
- int window_size_left,
- int window_size_right,
- int const sink_token_length,
- float const softcap,
- bool const deterministic,
- int const sm_margin) {
- #ifdef FLASHATTENTION_DISABLE_BACKWARD
- TORCH_CHECK(false, "This flash attention build does not support backward.");
- #endif
- auto dprops = at::cuda::getCurrentDeviceProperties();
- bool is_sm8x = dprops->major >= 8;
- TORCH_CHECK(is_sm8x, "FlashAttention only supports Ampere GPUs or newer.");
- auto q_type = q.dtype();
- TORCH_CHECK(q_type == torch::kFloat16 || q_type == torch::kBFloat16,
- "FlashAttention only support fp16 and bf16 data type");
- TORCH_CHECK(k.dtype() == q_type, "query and key must have the same dtype");
- TORCH_CHECK(v.dtype() == q_type, "query and value must have the same dtype");
- TORCH_CHECK(out.dtype() == q_type, "query and out must have the same dtype");
- TORCH_CHECK(dout.dtype() == q_type, "query and dout must have the same dtype");
- CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
- CHECK_DEVICE(out); CHECK_DEVICE(dout); CHECK_DEVICE(softmax_lse);
- TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
- TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
- TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
- TORCH_CHECK(out.stride(-1) == 1, "out tensor must have contiguous last dimension");
- TORCH_CHECK(dout.stride(-1) == 1, "dout tensor must have contiguous last dimension");
- at::Tensor cu_seqlens_q;
- bool const is_varlen_q = cu_seqlens_q_.has_value();
- if (is_varlen_q) {
- cu_seqlens_q = cu_seqlens_q_.value();
- CHECK_DEVICE(cu_seqlens_q); CHECK_CONTIGUOUS(cu_seqlens_q);
- TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32, "cu_seqlens_q must have dtype torch.int32");
- TORCH_CHECK(max_seqlen_q_.has_value(), "max_seqlen_q must be provided if cu_seqlens_q is provided");
- }
- at::Tensor cu_seqlens_k;
- bool const is_varlen_k = cu_seqlens_k_.has_value();
- if (is_varlen_k) {
- cu_seqlens_k = cu_seqlens_k_.value();
- CHECK_DEVICE(cu_seqlens_k); CHECK_CONTIGUOUS(cu_seqlens_k);
- TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32, "cu_seqlens_k must have dtype torch.int32");
- TORCH_CHECK(max_seqlen_k_.has_value(), "max_seqlen_k must be provided if cu_seqlens_k is provided");
- }
- // This is what we will template on
- bool const is_varlen = is_varlen_q || is_varlen_k || seqused_q_.has_value() || seqused_k_.has_value();
- #ifdef FLASHATTENTION_DISABLE_VARLEN
- TORCH_CHECK(!is_varlen, "This flash attention build does not support varlen.");
- #endif
- auto const sizes = q.sizes();
- int const batch_size = !is_varlen_q ? sizes[0] : cu_seqlens_q.size(0) - 1;
- int const seqlen_q = !is_varlen_q ? sizes[1] : max_seqlen_q_.value();
- int const total_q = !is_varlen_q ? batch_size * sizes[1] : sizes[0];
- int const num_heads = q.size(-2);
- int const head_size = q.size(-1);
- int const seqlen_k = !is_varlen_k ? k.size(1) : max_seqlen_k_.value();
- int const total_k = !is_varlen_k ? batch_size * k.size(1) : k.size(0);
- int const num_heads_k = k.size(-2);
- TORCH_CHECK(head_size % 8 == 0, "head_size should be a multiple of 8");
- int const max_headdim = get_max_headdim();
- TORCH_CHECK(head_size <= max_headdim, "FlashAttention forward only supports head dimension at most " + std::to_string(max_headdim));
- TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
- // This needs to go before kBlockM & kBlockN since we rely on the correct window_size and is_causal to set kBlockM
- if (window_size_left >= seqlen_k - 1) { window_size_left = -1; }
- if (window_size_right >= seqlen_q - 1) { window_size_right = -1; }
- if (is_causal) { window_size_right = 0; }
- // There's a case where is_causal=false, window_size=(-1, 0). Then set_params_bprop will set params.is_causal=true.
- // If we don't have is_causal here matching params.is_causal, we might get the wrong kBlockM (and cause IMA).
- is_causal = window_size_left < 0 && window_size_right == 0;
- int const arch = at::cuda::getCurrentDeviceProperties()->major * 10 + at::cuda::getCurrentDeviceProperties()->minor;
- int const head_size_rounded = round_up_headdim(head_size);
- // Very important that these match the kernel configs
- bool const is_local = (window_size_left >= 0 || window_size_right >= 0) && !is_causal;
- int const kBlockM_sm90 = head_size_rounded <= 64 ? (is_causal && softcap > 0.0 ? 96 : 128)
- : (head_size_rounded <= 96 ? 64
- : (head_size_rounded <= 128 ? (is_causal || is_local || softcap > 0.0 ? 64 : 80)
- : 64));
- int const kBlockM_sm80 = head_size_rounded <= 64 ? 128 : 64;
- int const kBlockM_sm86 = head_size_rounded <= 192 ? 64 : 32;
- int const kBlockM = arch >= 90 ? kBlockM_sm90 : (arch == 86 || arch == 89 ? kBlockM_sm86 : kBlockM_sm80);
- int const kBlockN_sm90 = head_size_rounded <= 128
- ? 128
- : (head_size_rounded <= 192 ? 96 : 80);
- int const kBlockN_sm80 = head_size_rounded <= 128
- ? 128
- : (head_size_rounded <= 192 ? 80 : 64);
- int const kBlockN_sm86 = head_size_rounded <= 64 ? 128
- : (head_size_rounded <= 96 ? 128
- : (head_size_rounded <= 128 ? 96
- : (head_size_rounded <= 192 ? 64 : 64)));
- int const kBlockN = arch >= 90 ? kBlockN_sm90 : (arch == 86 || arch == 89 ? kBlockN_sm86 : kBlockN_sm80);
- auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
- int const seqlen_q_rounded = round_multiple(seqlen_q, kBlockM);
- int const seqlen_k_rounded = round_multiple(seqlen_k, kBlockN);
- int const total_q_padded_rounded = round_multiple(total_q + batch_size * kBlockM, kBlockM);
- int const total_k_padded_rounded = round_multiple(total_k + batch_size * kBlockN, kBlockN);
- if (!is_varlen_q) {
- CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size);
- CHECK_SHAPE(out, batch_size, seqlen_q, num_heads, head_size);
- CHECK_SHAPE(dout, batch_size, seqlen_q, num_heads, head_size);
- } else {
- CHECK_SHAPE(q, total_q, num_heads, head_size);
- CHECK_SHAPE(out, total_q, num_heads, head_size);
- CHECK_SHAPE(dout, total_q, num_heads, head_size);
- CHECK_SHAPE(cu_seqlens_q, batch_size + 1);
- }
- if (!is_varlen_k) {
- CHECK_SHAPE(k, batch_size, seqlen_k, num_heads_k, head_size);
- CHECK_SHAPE(v, batch_size, seqlen_k, num_heads_k, head_size);
- } else {
- CHECK_SHAPE(k, total_k, num_heads_k, head_size);
- CHECK_SHAPE(v, total_k, num_heads_k, head_size);
- CHECK_SHAPE(cu_seqlens_k, batch_size + 1);
- }
- if (seqused_q_.has_value()){
- auto seqused_q = seqused_q_.value();
- TORCH_CHECK(seqused_q.dtype() == torch::kInt32, "seqused_q must have dtype int32");
- CHECK_DEVICE(seqused_q); CHECK_CONTIGUOUS(seqused_q);
- CHECK_SHAPE(seqused_q, batch_size);
- }
- if (seqused_k_.has_value()){
- auto seqused_k = seqused_k_.value();
- TORCH_CHECK(seqused_k.dtype() == torch::kInt32, "seqused_k must have dtype int32");
- CHECK_DEVICE(seqused_k); CHECK_CONTIGUOUS(seqused_k);
- CHECK_SHAPE(seqused_k, batch_size);
- }
- at::Tensor dq, dk, dv;
- if (dq_.has_value()) {
- dq = dq_.value();
- TORCH_CHECK(dq.dtype() == q_type, "dq must have the same dtype as q");
- CHECK_DEVICE(dq);
- TORCH_CHECK(dq.stride(-1) == 1, "dq must have contiguous last dimension");
- if (!is_varlen_q) {
- CHECK_SHAPE(dq, batch_size, seqlen_q, num_heads, head_size);
- } else {
- CHECK_SHAPE(dq, total_q, num_heads, head_size);
- }
- } else {
- dq = torch::empty_like(q);
- }
- if (dk_.has_value()) {
- dk = dk_.value();
- TORCH_CHECK(dk.dtype() == q_type, "dk must have the same dtype as q");
- CHECK_DEVICE(dk);
- TORCH_CHECK(dk.stride(-1) == 1, "dk must have contiguous last dimension");
- if (!is_varlen_k) {
- CHECK_SHAPE(dk, batch_size, seqlen_k, num_heads_k, head_size);
- } else {
- CHECK_SHAPE(dk, total_k, num_heads_k, head_size);
- }
- } else {
- dk = torch::empty_like(k);
- }
- if (dv_.has_value()) {
- dv = dv_.value();
- TORCH_CHECK(dv.dtype() == q_type, "dv must have the same dtype as q");
- CHECK_DEVICE(dv);
- TORCH_CHECK(dv.stride(-1) == 1, "dv must have contiguous last dimension");
- if (!is_varlen_k) {
- CHECK_SHAPE(dv, batch_size, seqlen_k, num_heads_k, head_size);
- } else {
- CHECK_SHAPE(dv, total_k, num_heads_k, head_size);
- }
- } else {
- dv = torch::empty_like(v);
- }
- // Otherwise the kernel will be launched from cuda:0 device
- // Cast to char to avoid compiler warning about narrowing
- at::cuda::CUDAGuard device_guard{(char)q.get_device()};
- auto opts = q.options();
- // Need softmax_d to have total_q_padded_rounded since we want its address to be aligned by 16/8 bytes for TMA / LDG.64
- at::Tensor softmax_d, softmax_lse_log2;
- if (!is_varlen) {
- // Need softmax_d to have seqlen_q_rounded since we want its address to be aligned by 16/8 bytes for TMA / LDG.64
- softmax_d = torch::empty({batch_size, num_heads, seqlen_q_rounded}, opts.dtype(at::kFloat));
- softmax_lse_log2 = torch::empty({batch_size, num_heads, seqlen_q_rounded}, opts.dtype(at::kFloat));
- } else {
- softmax_d = torch::empty({num_heads, total_q_padded_rounded}, opts.dtype(at::kFloat));
- softmax_lse_log2 = torch::empty({num_heads, total_q_padded_rounded}, opts.dtype(at::kFloat));
- }
- at::Tensor dq_accum, dk_accum, dv_accum;
- if (!is_varlen) {
- dq_accum = torch::empty({batch_size, num_heads, seqlen_q_rounded * head_size_rounded}, opts.dtype(at::kFloat));
- } else {
- dq_accum = torch::empty({num_heads, total_q_padded_rounded * head_size_rounded}, opts.dtype(at::kFloat));
- }
- if (num_heads_k != num_heads) { // MQA / GQA
- if (!is_varlen) {
- dk_accum = torch::zeros({batch_size, num_heads_k, seqlen_k_rounded * head_size_rounded}, opts.dtype(at::kFloat));
- dv_accum = torch::zeros({batch_size, num_heads_k, seqlen_k_rounded * head_size_rounded}, opts.dtype(at::kFloat));
- } else {
- dk_accum = torch::zeros({num_heads_k, total_k_padded_rounded, head_size_rounded}, opts.dtype(at::kFloat));
- dv_accum = torch::zeros({num_heads_k, total_k_padded_rounded, head_size_rounded}, opts.dtype(at::kFloat));
- }
- }
- Flash_bwd_params params;
- set_params_dgrad(params,
- batch_size,
- seqlen_q, seqlen_k,
- seqlen_q_rounded, seqlen_k_rounded,
- num_heads, num_heads_k,
- head_size, head_size_rounded,
- q, k, v, out,
- dout, dq, dk, dv,
- !is_varlen_q ? nullptr : cu_seqlens_q.data_ptr(),
- !is_varlen_k ? nullptr : cu_seqlens_k.data_ptr(),
- seqused_q_.has_value() ? seqused_q_.value().data_ptr() : nullptr,
- seqused_k_.has_value() ? seqused_k_.value().data_ptr() : nullptr,
- dq_accum.data_ptr(),
- num_heads_k != num_heads ? dk_accum.data_ptr() : nullptr,
- num_heads_k != num_heads ? dv_accum.data_ptr() : nullptr,
- softmax_lse.data_ptr(),
- softmax_d.data_ptr(),
- /*p_dropout=*/0.f,
- softmax_scale,
- window_size_left,
- window_size_right,
- softcap,
- deterministic,
- sm_margin);
- params.total_q = total_q;
- params.total_k = total_k;
- params.softmax_lse_log2_ptr = softmax_lse_log2.data_ptr();
- params.sink_token_length = sink_token_length;
- // auto tile_count_semaphore = (params.is_causal || params.is_local) ? torch::zeros({1}, opts.dtype(torch::kInt32)) : torch::empty({1}, opts.dtype(torch::kInt32));
- // params.tile_count_semaphore = tile_count_semaphore.data_ptr<int>();
- // Will be zero'ed out in the backward preprocess kernel
- at::Tensor dq_semaphore = torch::empty({(seqlen_q + kBlockM - 1) / kBlockM, batch_size, num_heads}, opts.dtype(torch::kInt32));
- params.dq_semaphore = dq_semaphore.data_ptr<int>();
- if (num_heads_k != num_heads && params.deterministic) {
- // TODO: do we need to zero them out?
- at::Tensor dk_semaphore = torch::empty({(seqlen_k + kBlockN - 1) / kBlockN, batch_size, num_heads_k}, opts.dtype(torch::kInt32));
- at::Tensor dv_semaphore = torch::empty({(seqlen_k + kBlockN - 1) / kBlockN, batch_size, num_heads_k}, opts.dtype(torch::kInt32));
- params.dk_semaphore = dk_semaphore.data_ptr<int>();
- params.dv_semaphore = dv_semaphore.data_ptr<int>();
- }
- #ifdef FLASHATTENTION_DISABLE_LOCAL
- TORCH_CHECK(!params.is_local, "This flash attention build does not support local attention.");
- #endif
- #ifdef FLASHATTENTION_DISABLE_SOFTCAP
- TORCH_CHECK(params.softcap == 0.0, "This flash attention build does not support tanh softcapping.");
- #endif
- if (total_q > 0 && total_k > 0 && num_heads_k > 0) {
- auto stream = at::cuda::getCurrentCUDAStream().stream();
- run_mha_bwd(params, stream);
- } else if (total_k > 0 && num_heads_k > 0) {
- // If seqlen_q == 0, then we have an empty tensor. We need to set the output to 0.
- dk.zero_();
- dv.zero_();
- softmax_d.zero_();
- } else if (total_q > 0 && num_heads_k > 0) {
- dq.zero_();
- softmax_d.zero_();
- }
- return { dq, dk, dv, softmax_d, softmax_lse_log2, dq_accum, dk_accum, dv_accum };
- }
- std::vector<at::Tensor>
- mha_combine(const at::Tensor &out_partial, // num_splits x batch_size x seqlen x num_heads x head_size
- const at::Tensor &lse_partial, // num_splits x batch_size x seqlen x num_heads
- std::optional<at::Tensor> out_, // batch_size x seqlen x num_heads x head_size
- std::optional<at::ScalarType> out_dtype_
- ) {
- auto dprops = at::cuda::getCurrentDeviceProperties();
- bool is_sm8x = dprops->major >= 8;
- TORCH_CHECK(is_sm8x, "Attention combine function only supports Ampere GPUs or newer.");
- auto out_partial_type = out_partial.scalar_type();
- TORCH_CHECK(out_partial_type == at::ScalarType::Float, "Attention combine function only support fp32 data type");
- TORCH_CHECK(lse_partial.scalar_type() == at::ScalarType::Float, "Attention combine function only support fp32 data type");
- CHECK_DEVICE(out_partial); CHECK_DEVICE(lse_partial);
- TORCH_CHECK(out_partial.stride(-1) == 1, "Input tensor must have contiguous last dimension");
- TORCH_CHECK(lse_partial.stride(-2) == 1, "LSE tensor must be contiguous in the seqlen dimension");
- const auto sizes = out_partial.sizes();
- const int num_splits = sizes[0];
- const int batch_size = sizes[1];
- const int seqlen = sizes[2];
- const int num_heads = sizes[3];
- const int head_size_og = sizes[4];
- TORCH_CHECK(head_size_og <= 256, "FlashAttention combine only supports head dimension at most 256");
- TORCH_CHECK(num_splits <= 256, "FlashAttention combine only supports num_splits at most 256");
- CHECK_SHAPE(out_partial, num_splits, batch_size, seqlen, num_heads, head_size_og);
- CHECK_SHAPE(lse_partial, num_splits, batch_size, seqlen, num_heads);
- int const alignment = 4;
- at::Tensor out_partial_padded;
- auto pad = [](at::Tensor x, int alignment) {
- return x.size(-1) % alignment == 0 ? x : torch::nn::functional::pad(x, torch::nn::functional::PadFuncOptions({0, alignment - x.size(-1) % alignment}));
- };
- out_partial_padded = pad(out_partial, alignment);
- auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
- const int head_size = round_multiple(head_size_og, alignment);
- auto opts = out_partial.options();
- at::ScalarType out_type = out_dtype_.value_or(out_partial.scalar_type());
- TORCH_CHECK(out_type == at::ScalarType::Float || out_type == at::ScalarType::BFloat16 || out_type == at::ScalarType::Half, "Output type must be FP32, FP16 or BF16");
- at::Tensor out;
- if (out_.has_value()) {
- out = out_.value();
- TORCH_CHECK(out.scalar_type() == out_type);
- CHECK_DEVICE(out);
- TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension");
- CHECK_SHAPE(out, batch_size, seqlen, num_heads, head_size_og);
- if (head_size_og % alignment != 0) {
- out = torch::empty({batch_size, seqlen, num_heads, head_size}, opts.dtype(out_type));
- }
- } else {
- out = torch::empty({batch_size, seqlen, num_heads, head_size}, opts.dtype(out_type));
- }
- // Otherwise the kernel will be launched from cuda:0 device
- // Cast to char to avoid compiler warning about narrowing
- at::cuda::CUDAGuard device_guard{(char)out_partial.get_device()};
- auto softmax_lse = torch::empty({batch_size, num_heads, seqlen}, opts.dtype(at::kFloat)).transpose(1, 2);
- Flash_fwd_params params {}; // Need to reset the params to set everything to zero
- params.is_fp32 = out_type == at::ScalarType::Float;
- params.is_bf16 = out_type == at::ScalarType::BFloat16;
- params.oaccum_ptr = out_partial_padded.data_ptr();
- params.softmax_lseaccum_ptr = lse_partial.data_ptr();
- params.o_ptr = out.data_ptr();
- params.softmax_lse_ptr = softmax_lse.data_ptr();
- params.b = batch_size;
- params.h = num_heads;
- params.seqlen_q = seqlen;
- params.d = head_size;
- params.num_splits = num_splits;
- params.oaccum_split_stride = out_partial_padded.stride(0);
- params.oaccum_row_stride = out_partial_padded.stride(2);
- params.oaccum_head_stride = out_partial_padded.stride(3);
- params.oaccum_batch_stride = out_partial_padded.stride(1);
- params.lseaccum_split_stride = lse_partial.stride(0);
- params.lseaccum_head_stride = lse_partial.stride(3);
- params.lseaccum_batch_stride = lse_partial.stride(1);
- params.o_row_stride = out.stride(1);
- params.o_head_stride = out.stride(2);
- params.o_batch_stride = out.stride(0);
- if (seqlen > 0 && batch_size > 0) {
- auto stream = at::cuda::getCurrentCUDAStream().stream();
- run_mha_fwd_combine(params, stream);
- }
- at::Tensor out_padded = out;
- if (head_size_og % alignment != 0) {
- out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
- // if (out_.has_value()) { out_.value().copy_(out); }
- }
- return {out, softmax_lse};
- }
- PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
- m.doc() = "FlashAttention";
- m.def("fwd", &mha_fwd, "Forward pass");
- m.def("bwd", &mha_bwd, "Backward pass");
- m.def("fwd_combine", &mha_combine, "Combine partial attention outputs");
- }
|