123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353 |
- # Install the newest triton version with
- # pip install "git+https://github.com/openai/triton.git#egg=triton&subdirectory=python"
- import pickle
- import math
- import time
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from einops import rearrange, repeat
- from flash_attn.utils.benchmark import benchmark_all, benchmark_forward, benchmark_backward
- from flash_attn.utils.benchmark import benchmark_fwd_bwd, benchmark_combined
- from flash_attn import flash_attn_qkvpacked_func
- from flash_attn_interface import flash_attn_func, _flash_attn_forward
- try:
- from triton_fused_attention import attention as attention_triton
- except ImportError:
- attention_triton = None
- try:
- import xformers.ops as xops
- except ImportError:
- xops = None
- try:
- import cudnn
- except ImportError:
- cudnn = None
- def convert_to_cudnn_type(torch_type):
- if torch_type == torch.float16:
- return cudnn.data_type.HALF
- elif torch_type == torch.bfloat16:
- return cudnn.data_type.BFLOAT16
- elif torch_type == torch.float32:
- return cudnn.data_type.FLOAT
- elif torch_type == torch.int32:
- return cudnn.data_type.INT32
- elif torch_type == torch.int64:
- return cudnn.data_type.INT64
- elif torch_type == torch.float8_e4m3fn:
- return cudnn.data_type.FP8_E4M3
- elif torch_type == torch.float8_e5m2:
- return cudnn.data_type.FP8_E5M2
- else:
- raise ValueError("Unsupported tensor data type.")
- def cudnn_spda_setup(qkv, seqlen_q, seqlen_k, causal=False):
- b, _, _, nheads, headdim = qkv.shape
- assert cudnn is not None, 'CUDNN is not available'
- o_gpu = torch.zeros(b, seqlen_q, nheads, headdim, dtype=qkv.dtype, device=qkv.device)
- o_gpu_transposed = torch.as_strided(
- o_gpu,
- [b, nheads, seqlen_q, headdim],
- [nheads * seqlen_q * headdim, headdim, nheads * headdim, 1],
- )
- stats_gpu = torch.empty(b, nheads, seqlen_q, 1, dtype=torch.float32, device=qkv.device)
- amax_s_gpu = torch.empty(1, 1, 1, 1, dtype=torch.float32, device=qkv.device)
- amax_o_gpu = torch.empty(1, 1, 1, 1, dtype=torch.float32, device=qkv.device)
- graph = cudnn.pygraph(
- io_data_type=convert_to_cudnn_type(qkv.dtype),
- intermediate_data_type=cudnn.data_type.FLOAT,
- compute_data_type=cudnn.data_type.FLOAT,
- )
- new_q = torch.as_strided(
- qkv,
- [b, nheads, seqlen_q, headdim],
- [seqlen_q * nheads * headdim * 3, headdim, headdim * nheads * 3, 1],
- storage_offset=0,
- )
- q = graph.tensor(
- name = "Q",
- dim = list(new_q.shape),
- stride = list(new_q.stride()),
- data_type=convert_to_cudnn_type(qkv.dtype)
- )
- new_k = torch.as_strided(
- qkv,
- [b, nheads, seqlen_k, headdim],
- [seqlen_k * nheads * headdim * 3, headdim, headdim * nheads * 3, 1],
- storage_offset=nheads * headdim,
- )
- k = graph.tensor(
- name = "K",
- dim = list(new_k.shape),
- stride = list(new_k.stride()),
- data_type=convert_to_cudnn_type(qkv.dtype)
- )
- new_v = torch.as_strided(
- qkv,
- [b, nheads, seqlen_k, headdim],
- [seqlen_k * nheads * headdim * 3, headdim, headdim * nheads * 3, 1],
- storage_offset=nheads * headdim * 2,
- )
- v = graph.tensor(
- name = "V",
- dim = list(new_v.shape),
- stride = list(new_v.stride()),
- data_type=convert_to_cudnn_type(qkv.dtype)
- )
- def get_default_scale_tensor():
- return graph.tensor(
- dim = [1, 1, 1, 1],
- stride = [1, 1, 1, 1],
- data_type=cudnn.data_type.FLOAT
- )
- default_scale_gpu = torch.ones(1, 1, 1, 1, dtype=torch.float32, device="cuda")
- descale_q = get_default_scale_tensor()
- descale_k = get_default_scale_tensor()
- descale_v = get_default_scale_tensor()
- descale_s = get_default_scale_tensor()
- scale_s = get_default_scale_tensor()
- scale_o = get_default_scale_tensor()
- o, _, amax_s, amax_o = graph.sdpa_fp8(
- q=q,
- k=k,
- v=v,
- descale_q=descale_q,
- descale_k=descale_k,
- descale_v=descale_v,
- descale_s=descale_s,
- scale_s=scale_s,
- scale_o=scale_o,
- is_inference=True,
- attn_scale=1.0 / math.sqrt(headdim),
- use_causal_mask=causal,
- name="sdpa",
- )
- o.set_output(True).set_dim(o_gpu_transposed.shape).set_stride(o_gpu_transposed.stride())
- amax_s.set_output(False).set_dim(amax_s_gpu.shape).set_stride(amax_s_gpu.stride())
- amax_o.set_output(False).set_dim(amax_o_gpu.shape).set_stride(amax_o_gpu.stride())
- # stats.set_output(True).set_data_type(cudnn.data_type.FLOAT)
- graph.validate()
- graph.build_operation_graph()
- graph.create_execution_plans([cudnn.heur_mode.A, cudnn.heur_mode.FALLBACK])
- graph.check_support()
- graph.build_plans()
- variant_pack = {
- q: new_q,
- k: new_k,
- v: new_v,
- descale_q: default_scale_gpu,
- descale_k: default_scale_gpu,
- descale_v: default_scale_gpu,
- descale_s: default_scale_gpu,
- scale_s: default_scale_gpu,
- scale_o: default_scale_gpu,
- o: o_gpu_transposed,
- amax_s: amax_s_gpu,
- amax_o: amax_o_gpu,
- }
- workspace = torch.empty(graph.get_workspace_size(), device="cuda", dtype=torch.uint8)
- def run(*args, **kwargs):
- graph.execute(variant_pack, workspace)
- return o_gpu, amax_o_gpu
- return run
- def attention_pytorch(qkv, dropout_p=0.0, causal=True):
- """
- Arguments:
- qkv: (batch_size, seqlen, 3, nheads, head_dim)
- dropout_p: float
- Output:
- output: (batch_size, seqlen, nheads, head_dim)
- """
- batch_size, seqlen, _, nheads, d = qkv.shape
- q, k, v = qkv.unbind(dim=2)
- q = rearrange(q, 'b t h d -> (b h) t d')
- k = rearrange(k, 'b s h d -> (b h) d s')
- softmax_scale = 1.0 / math.sqrt(d)
- # Preallocate attn_weights for `baddbmm`
- scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device)
- scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale),
- '(b h) t s -> b h t s', h=nheads)
- if causal:
- # "triu_tril_cuda_template" not implemented for 'BFloat16'
- # So we have to construct the mask in float
- causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
- # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
- scores = scores + causal_mask.to(dtype=scores.dtype)
- attention = torch.softmax(scores, dim=-1)
- attention_drop = F.dropout(attention, dropout_p)
- output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
- return output.to(dtype=qkv.dtype)
- def flops(batch, seqlen, headdim, nheads, causal, mode="fwd"):
- assert mode in ["fwd", "bwd", "fwd_bwd"]
- f = 4 * batch * seqlen**2 * nheads * headdim // (2 if causal else 1)
- return f if mode == "fwd" else (2.5 * f if mode == "bwd" else 3.5 * f)
- def efficiency(flop, time):
- return (flop / time / 10**12) if not math.isnan(time) else 0.0
- def time_fwd(func, *args, **kwargs):
- time.sleep(1) # Sleep to avoid residual power throttling from the previous benchmark
- time_f = benchmark_forward(func, *args, **kwargs)
- return time_f[1].mean
- torch.manual_seed(0)
- repeats = 30
- device = 'cuda'
- # dtype = torch.float16
- dtype = torch.float8_e4m3fn
- # bs_seqlen_vals = [(32, 512), (16, 1024), (8, 2048), (4, 4224), (2, 8448), (1, 8448 * 2)]
- bs_seqlen_vals = [(32, 512), (16, 1024), (8, 2048), (4, 4096), (2, 8192), (1, 8192 * 2)]
- # bs_seqlen_vals = [(4, 4096), (2, 8192), (1, 8192 * 2)]
- # bs_seqlen_vals = [(32, 512), (16, 1024), (8, 2048)]
- causal_vals = [False, True]
- headdim_vals = [64, 128, 256]
- dim = 2048
- # dim = 256
- dropout_p = 0.0
- methods = (["Pytorch", "Flash3"]
- + (["cuDNN"] if cudnn is not None else [])
- # + (["Triton"] if attention_triton is not None else [])
- # + (["xformers.c"] if xops is not None else [])
- # + (["xformers.f"] if xops is not None else [])
- )
- time_f = {}
- time_b = {}
- time_f_b = {}
- speed_f = {}
- speed_b = {}
- speed_f_b = {}
- for causal in causal_vals:
- for headdim in headdim_vals:
- for batch_size, seqlen in bs_seqlen_vals:
- torch.cuda.empty_cache()
- config = (causal, headdim, batch_size, seqlen)
- nheads = dim // headdim
- q, k, v = [torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=torch.bfloat16, requires_grad=False) for _ in range(3)]
-
- qkv = torch.stack([q, k, v], dim=2)
- qkv = qkv.to(torch.bfloat16)
- f = time_fwd(attention_pytorch, qkv, dropout_p, causal=causal, repeats=repeats, verbose=False)
- time_f[config, "Pytorch"] = f
- res_baseline = attention_pytorch(qkv, dropout_p, causal=causal)
- if attention_triton is not None:
- q_transposed = q.transpose(1, 2).contiguous().to(torch.float8_e4m3fn)
- k_transposed = k.transpose(1, 2).contiguous().to(torch.float8_e4m3fn)
- v_transposed = v.transpose(1, 2).contiguous().permute(0, 1, 3, 2).to(torch.float8_e4m3fn)
- scale = 1 / math.sqrt(headdim)
- f = time_fwd(
- attention_triton, q_transposed, k_transposed, v_transposed,
- causal, scale, repeats=5, verbose=False, desc='Triton'
- )
- f = time_fwd(
- attention_triton, q_transposed, k_transposed, v_transposed,
- causal, scale, repeats=repeats, verbose=False, desc='Triton'
- )
- time_f[config, "Triton"] = f
- res = attention_triton(
- q_transposed, k_transposed, v_transposed.permute(0, 1, 3, 2),
- causal, scale
- ).half().transpose(1, 2)
- torch.testing.assert_close(res, res_baseline, atol=0.5, rtol=0.5)
- # out = torch.empty_like(q)
- q, k, v = q.to(dtype), k.to(dtype), v.to(dtype)
- softmax_scale = q.shape[-1] ** (-0.5)
- descale_q = torch.tensor([1.0], dtype=torch.float32, device='cuda')
- descale_k = torch.tensor([1.0], dtype=torch.float32, device='cuda')
- descale_v = torch.tensor([1.0], dtype=torch.float32, device='cuda')
- # f = time_fwd(flash_attn_func, q, k, v, causal=causal, repeats=repeats, verbose=False)
- f = time_fwd(
- _flash_attn_forward,
- q,
- k,
- v,
- softmax_scale,
- causal=causal,
- window_size=(-1,-1),
- descale_q=descale_q,
- descale_k=descale_k,
- descale_v=descale_v,
- repeats=repeats,
- verbose=False
- )
- # res = flash_attn_func(q, k, v, causal=causal)
- # torch.testing.assert_close(res.half(), res_baseline, atol=0.05, rtol=0.05)
- time_f[config, "Flash3"] = f
- if cudnn is not None:
- qkv_fp8 = qkv.to(dtype)
- time.sleep(1) # Sleep to avoid residual power throttling from the previous benchmark
- f = time_fwd(
- cudnn_spda_setup(
- qkv_fp8, seqlen, seqlen,
- causal=causal
- ),
- repeats=repeats, verbose=False
- )
- time_f[config, "cuDNN"] = f
- # res, amax_o = cudnn_spda_setup(
- # qkv_fp8, seqlen, seqlen,
- # causal=causal
- # )()
- # res = res.half()
- # TODO: CUDNN has numerics issues when
- # num_heads=16, dim=128, seq_len=1024, batch_size=2
- # or larger sizes.
- # res_cpu = res.cpu().reshape(-1)
- # res_baseline_cpu = res_baseline.cpu().reshape(-1)
- # print(amax_o)
- # print(res)
- # print(res_baseline)
- # for i in range(len(res_cpu)):
- # item = res_cpu[i]
- # item_baseline = res_baseline_cpu[i]
- # if abs(item - item_baseline) > 0.5:
- # print(i)
- # print(item)
- # print(item_baseline)
- # torch.testing.assert_close(res, res_baseline, atol=0.05, rtol=0.05)
- print(f"### causal={causal}, headdim={headdim}, batch_size={batch_size}, seqlen={seqlen} ###")
- for method in methods:
- speed_f[config, method] = efficiency(
- flops(batch_size, seqlen, headdim, nheads, causal, mode="fwd"),
- time_f[config, method]
- )
- #print (time_f[config,method])
- print(
- f"{method} fwd: {speed_f[config, method]:.2f} TFLOPs/s, {time_f[config, method] * 1e3} ms, "
- )
- # with open('flash3_attn_time.plk', 'wb') as fp:
- # pickle.dump((time_f, time_b, time_f_b), fp, protocol=pickle.HIGHEST_PROTOCOL)
|