123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149 |
- # The triton fused matmul + sqrelu is faster for fp16 but slower for bf16, compared
- # to naive implementation.
- import fused_dense_lib as fused_dense_cuda
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from torch.cuda.amp import custom_bwd, custom_fwd
- from flash_attn.ops.activations import sqrelu_bwd, sqrelu_fwd
- from flash_attn.ops.triton.linear import triton_dgrad_act, triton_linear_act
- class FusedDenseSqreluDenseFunc(torch.autograd.Function):
- @staticmethod
- @custom_fwd
- def forward(ctx, x, weight1, bias1, weight2, bias2, checkpoint_lvl=0):
- """checkpoint_lvl:
- 0: no recomputation in the bwd
- 1: recompute gelu_out in the bwd
- 2: recompute act_input and gelu_out in the bwd
- """
- if torch.is_autocast_enabled():
- dtype = torch.get_autocast_gpu_dtype()
- x, weight1, bias1, weight2, bias2 = [
- a.to(dtype=dtype) for a in [x, weight1, bias1, weight2, bias2]
- ]
- is_bf16 = x.dtype == torch.bfloat16
- assert checkpoint_lvl in [0, 1, 2]
- x = x.contiguous()
- weight1 = weight1.contiguous()
- bias1 = bias1.contiguous()
- weight2 = weight2.contiguous()
- bias2 = bias2.contiguous()
- batch_shape, n = x.shape[:-1], x.shape[-1]
- batch_dim = batch_shape.numel()
- if is_bf16:
- act_input = fused_dense_cuda.linear_bias_forward(
- x.reshape(batch_dim, n), weight1, bias1
- )
- output1 = sqrelu_fwd(act_input)
- else:
- save_act_input = checkpoint_lvl != 2
- result = triton_linear_act(
- x.reshape(batch_dim, n),
- weight1,
- bias1,
- activation="squared_relu",
- save_act_input=save_act_input,
- )
- if save_act_input:
- output1, act_input = result
- else:
- output1 = result
- output2 = fused_dense_cuda.linear_bias_forward(output1, weight2, bias2)
- ctx.checkpoint_lvl = checkpoint_lvl
- if checkpoint_lvl == 0:
- ctx.save_for_backward(x, weight1, bias1, weight2, act_input, output1)
- elif checkpoint_lvl == 1:
- ctx.save_for_backward(x, weight1, bias1, weight2, act_input)
- elif checkpoint_lvl == 2:
- ctx.save_for_backward(x, weight1, bias1, weight2)
- return output2.reshape(*batch_shape, output2.shape[-1])
- @staticmethod
- @custom_bwd
- def backward(ctx, grad_output):
- grad_output = grad_output.contiguous()
- checkpoint_lvl = ctx.checkpoint_lvl
- x, weight1, bias1, weight2, *rest = ctx.saved_tensors
- batch_shape, n = x.shape[:-1], x.shape[-1]
- batch_dim = batch_shape.numel()
- is_bf16 = x.dtype == torch.bfloat16
- if checkpoint_lvl == 0:
- act_input, output1 = rest
- elif checkpoint_lvl == 1:
- (act_input,) = rest
- output1 = sqrelu_fwd(act_input)
- elif checkpoint_lvl == 2:
- if is_bf16:
- act_input = fused_dense_cuda.linear_bias_forward(
- x.reshape(batch_dim, n), weight1, bias1
- )
- output1 = sqrelu_fwd(act_input)
- else:
- output1, act_input = triton_linear_act(
- x.reshape(batch_dim, n),
- weight1,
- bias1,
- activation="squared_relu",
- save_act_input=True,
- )
- if is_bf16:
- grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
- grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(output1, grad_output)
- grad_output1 = grad_output @ weight2
- grad_act_input = sqrelu_bwd(grad_output1, act_input)
- grad_input, grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_backward(
- x.reshape(batch_dim, n), weight1, grad_act_input
- )
- else:
- grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
- grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(output1, grad_output)
- grad_act_input = triton_dgrad_act(
- grad_output, weight2, activation="squared_relu", act_input=act_input
- )
- grad_input, grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_backward(
- x.reshape(batch_dim, n), weight1, grad_act_input
- )
- return grad_input.reshape_as(x), grad_weight1, grad_bias1, grad_weight2, grad_bias2, None
- fused_dense_sqrelu_dense_function = FusedDenseSqreluDenseFunc.apply
- class FusedDenseSqreluDense(nn.Module):
- def __init__(
- self,
- in_features,
- hidden_features=None,
- out_features=None,
- bias1=True,
- bias2=True,
- checkpoint_lvl=0,
- device=None,
- dtype=None,
- ):
- """
- checkpoint_lvl (increasing lvl means slower but more memory saving):
- 0: no recomputation in the bwd
- 1: recompute gelu_out in the bwd
- 2: recompute gelu_in and gelu_out in the bwd
- """
- assert checkpoint_lvl in [0, 1, 2]
- factory_kwargs = {"device": device, "dtype": dtype}
- super().__init__()
- out_features = out_features or in_features
- hidden_features = hidden_features or in_features * 4
- assert bias1 == True, "DenseSqreluDense module without bias is currently not supported"
- assert bias2 == True, "DenseSqreluDense module without bias is currently not supported"
- self.checkpoint_lvl = checkpoint_lvl
- self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1, **factory_kwargs)
- self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2, **factory_kwargs)
- def forward(self, x):
- assert x.is_cuda
- return fused_dense_sqrelu_dense_function(
- x, self.fc1.weight, self.fc1.bias, self.fc2.weight, self.fc2.bias, self.checkpoint_lvl
- )
|