123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373 |
- # Copyright (c) 2022, Tri Dao.
- # Inspired by / adapted from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
- import math
- import re
- from collections import OrderedDict
- from copy import deepcopy
- from functools import partial
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from einops import rearrange
- from timm.models.helpers import named_apply
- from torch.nn.init import trunc_normal_
- from torchvision.ops import StochasticDepth
- from flash_attn.layers.patch_embed import PatchEmbed
- from flash_attn.modules.block import Block
- from flash_attn.modules.mha import MHA
- from flash_attn.modules.mlp import FusedMLP, Mlp
- try:
- from flash_attn.ops.triton.layer_norm import layer_norm_fn
- except ImportError:
- layer_norm_fn = None
- def create_mixer_cls(
- num_heads, qkv_bias, attn_drop, use_flash_attn, fused_bias_fc, cross_attn=False
- ):
- mixer_cls = partial(
- MHA,
- num_heads=num_heads,
- cross_attn=cross_attn,
- qkv_proj_bias=qkv_bias,
- dropout=attn_drop,
- fused_bias_fc=fused_bias_fc,
- use_flash_attn=use_flash_attn,
- )
- return mixer_cls
- def create_mlp_cls(embed_dim, mlp_ratio, act_layer, fused_mlp):
- inner_dim = int(embed_dim * mlp_ratio)
- if not fused_mlp:
- mlp_cls = partial(Mlp, hidden_features=inner_dim, activation=act_layer())
- else:
- mlp_cls = partial(FusedMLP, hidden_features=inner_dim)
- return mlp_cls
- def create_block(
- embed_dim,
- num_heads,
- mlp_ratio,
- qkv_bias,
- drop_rate,
- attn_drop_rate,
- drop_path1,
- drop_path2,
- norm_layer,
- act_layer,
- use_flash_attn,
- fused_bias_fc,
- fused_mlp,
- fused_dropout_add_ln,
- layer_idx=None,
- n_layer=None,
- last_layer_subset=False,
- ):
- mixer_cls = create_mixer_cls(
- num_heads,
- qkv_bias,
- attn_drop_rate,
- use_flash_attn,
- fused_bias_fc,
- cross_attn=(last_layer_subset and layer_idx == n_layer - 1),
- )
- mlp_cls = create_mlp_cls(embed_dim, mlp_ratio, act_layer, fused_mlp)
- # TD [2022-10-15]: Force residual in fp32 in case of DeepSpeed
- block = Block(
- embed_dim,
- mixer_cls,
- mlp_cls,
- norm_cls=norm_layer,
- prenorm=True,
- resid_dropout1=drop_rate,
- resid_dropout2=drop_rate,
- drop_path1=drop_path1,
- drop_path2=drop_path2,
- fused_dropout_add_ln=fused_dropout_add_ln,
- residual_in_fp32=True,
- )
- return block
- class VisionTransformer(nn.Module):
- """Vision Transformer
- A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
- - https://arxiv.org/abs/2010.11929
- """
- def __init__(
- self,
- img_size=224,
- patch_size=16,
- in_chans=3,
- num_classes=1000,
- global_pool="token",
- embed_dim=768,
- depth=12,
- num_heads=12,
- mlp_ratio=4.0,
- qkv_bias=True,
- init_values=None,
- class_token=True,
- no_embed_class=False,
- pre_norm=False,
- fc_norm=None,
- drop_rate=0.0,
- attn_drop_rate=0.0,
- drop_path_rate=0.0,
- weight_init="",
- embed_layer=PatchEmbed,
- norm_layer=None,
- act_layer=None,
- use_flash_attn=False,
- fused_bias_fc=False,
- fused_mlp=False,
- fused_dropout_add_ln=False,
- ):
- """
- Args:
- img_size (int, tuple): input image size
- patch_size (int, tuple): patch size
- in_chans (int): number of input channels
- num_classes (int): number of classes for classification head
- global_pool (str): type of global pooling for final sequence (default: 'token')
- embed_dim (int): embedding dimension
- depth (int): depth of transformer
- num_heads (int): number of attention heads
- mlp_ratio (int): ratio of mlp hidden dim to embedding dim
- qkv_bias (bool): enable bias for qkv if True
- init_values: (float): layer-scale init values
- class_token (bool): use class token
- fc_norm (Optional[bool]): pre-fc norm after pool, set if global_pool == 'avg' if None (default: None)
- drop_rate (float): dropout rate
- attn_drop_rate (float): attention dropout rate
- drop_path_rate (float): stochastic depth rate
- weight_init (str): weight init scheme
- embed_layer (nn.Module): patch embedding layer
- norm_layer: (nn.Module): normalization layer
- act_layer: (nn.Module): MLP activation layer
- """
- super().__init__()
- assert global_pool == "token", "Only support pooling with CLS token"
- assert class_token
- assert init_values is None, "LayerScale is not supported yet"
- assert weight_init == ""
- assert fc_norm is None
- # pre_norm seems redundant, as there's a LayerNorm right at the start of each block, idk
- assert not pre_norm
- use_fc_norm = global_pool == "avg" if fc_norm is None else fc_norm
- norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
- act_layer = act_layer or nn.GELU
- self.num_classes = num_classes
- self.global_pool = global_pool
- self.num_features = (
- self.embed_dim
- ) = embed_dim # num_features for consistency with other models
- self.num_prefix_tokens = 1 if class_token else 0
- self.no_embed_class = no_embed_class
- patch_embed_extra_kwargs = (
- {"fused_bias_fc": fused_bias_fc} if embed_layer is PatchEmbed else {}
- )
- self.patch_embed = embed_layer(
- img_size=img_size,
- patch_size=patch_size,
- in_chans=in_chans,
- embed_dim=embed_dim,
- bias=not pre_norm, # disable bias if pre-norm is used (e.g. CLIP)
- **patch_embed_extra_kwargs,
- )
- num_patches = self.patch_embed.num_patches
- self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None
- embed_len = num_patches if no_embed_class else num_patches + self.num_prefix_tokens
- self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * 0.02)
- dpr = [
- x.item() for x in torch.linspace(0, drop_path_rate, depth)
- ] # stochastic depth decay rule
- # We change the order of dropout, residual and layer norm:
- # Instead of LN -> Attn / MLP -> Dropout -> Add, we do:
- # Dropout -> Add -> LN -> Attn / MLP, returning both the residual branch (output of Add) and
- # the main branch (output of MLP). The model definition is unchanged, but the mapping of the
- # nn.Dropout probabilities are changed.
- # This is for performance reason: we can fuse dropout + add + layer_norm.
- self.blocks = nn.ModuleList(
- [
- create_block(
- embed_dim,
- num_heads,
- mlp_ratio,
- qkv_bias,
- drop_rate,
- attn_drop_rate,
- drop_path1=dpr[i - 1] if i > 0 else 0.0,
- drop_path2=dpr[i],
- norm_layer=norm_layer,
- act_layer=act_layer,
- use_flash_attn=use_flash_attn,
- fused_bias_fc=fused_bias_fc,
- fused_mlp=fused_mlp,
- fused_dropout_add_ln=fused_dropout_add_ln,
- layer_idx=i,
- n_layer=depth,
- last_layer_subset=(global_pool == "token"),
- )
- for i in range(depth)
- ]
- )
- self.dropout = nn.Dropout(p=drop_rate)
- self.drop_path = StochasticDepth(p=dpr[-1], mode="row")
- self.norm = norm_layer(embed_dim)
- self.fused_dropout_add_ln = fused_dropout_add_ln
- if self.fused_dropout_add_ln and layer_norm_fn is None:
- raise ImportError("Triton is not installed")
- # Classifier Head
- self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
- self.init_weights(weight_init)
- def init_weights(self, mode=""):
- assert mode == ""
- trunc_normal_(self.pos_embed, std=0.02)
- if self.cls_token is not None:
- nn.init.normal_(self.cls_token, std=1e-6)
- named_apply(init_weights_vit_timm, self)
- def _init_weights(self, m):
- # this fn left here for compat with downstream users
- init_weights_vit_timm(m)
- @torch.jit.ignore
- def no_weight_decay(self):
- return {"pos_embed", "cls_token"}
- def _pos_embed(self, x):
- if self.no_embed_class:
- # deit-3, updated JAX (big vision)
- # position embedding does not overlap with class token, add then concat
- x = x + self.pos_embed
- if self.cls_token is not None:
- x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
- else:
- # original timm, JAX, and deit vit impl
- # pos_embed has entry for class token, concat then add
- if self.cls_token is not None:
- x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
- x = x + self.pos_embed
- return x
- def forward_features(self, x, all_tokens=True):
- """
- If all_tokens==False and self.global_pool == 'token', we only return the features for the
- cls token.
- """
- x = self.patch_embed(x)
- hidden_states = self._pos_embed(x)
- residual = None
- if self.global_pool != "token" or all_tokens:
- # if True:
- for block in self.blocks:
- hidden_states, residual = block(hidden_states, residual)
- else:
- for block in self.blocks[:-1]:
- hidden_states, residual = block(hidden_states, residual)
- # For the last layer, we only want the 1st token of the output. So we do cross-attention
- # where the query is the 1st token and the key/value is the whole sequence.
- hidden_states, residual = self.blocks[-1](
- hidden_states, residual, mixer_subset=slice(0, 1)
- )
- if not self.fused_dropout_add_ln:
- residual = self.drop_path(self.dropout(hidden_states)) + residual
- hidden_states = self.norm(residual.to(dtype=self.norm.weight.dtype))
- else:
- if self.drop_path.p == 0 or not self.training:
- rowscale = None
- else:
- rowscale = self.drop_path(
- torch.ones(
- hidden_states.shape[:-1],
- device=hidden_states.device,
- dtype=hidden_states.dtype,
- )
- )
- # Set prenorm=False here since we don't need to the residual
- hidden_states = layer_norm_fn(
- hidden_states,
- self.norm.weight,
- self.norm.bias,
- residual=residual,
- eps=self.norm.eps,
- dropout_p=self.dropout.p if self.training else 0.0,
- rowscale=rowscale,
- prenorm=False,
- )
- return hidden_states
- def forward_head(self, x, pre_logits: bool = False):
- if self.global_pool:
- x = x[:, self.num_prefix_tokens :].mean(dim=1) if self.global_pool == "avg" else x[:, 0]
- return x if pre_logits else self.head(x)
- def forward(self, x):
- x = self.forward_features(x, all_tokens=False)
- x = self.forward_head(x)
- return x
- def load_state_dict(self, state_dict, strict=True):
- patch_embed_weight = state_dict["patch_embed.proj.weight"]
- if patch_embed_weight.dim() == 4:
- # convert from Conv2d to Linear
- state_dict["patch_embed.proj.weight"] = rearrange(
- patch_embed_weight, "o c h w -> o (c h w)"
- )
- def key_mapping_attn(key):
- key = re.sub(r"^blocks.(\d+).attn.qkv.", r"blocks.\1.mixer.Wqkv.", key)
- key = re.sub(r"^blocks.(\d+).attn.proj.", r"blocks.\1.mixer.out_proj.", key)
- return key
- state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
- n_layer = len(self.blocks)
- # Convert from Wqkv to Wq and Wkv for cross attention (last layer)
- if (
- self.blocks[-1].mixer.cross_attn
- and f"blocks.{n_layer - 1}.mixer.Wqkv.weight" in state_dict
- ):
- Wqkv = state_dict.pop(f"blocks.{n_layer - 1}.mixer.Wqkv.weight")
- bqkv = state_dict.pop(f"blocks.{n_layer - 1}.mixer.Wqkv.bias")
- state_dict[f"blocks.{n_layer - 1}.mixer.Wq.weight"] = Wqkv[: self.embed_dim]
- state_dict[f"blocks.{n_layer - 1}.mixer.Wkv.weight"] = Wqkv[self.embed_dim :]
- state_dict[f"blocks.{n_layer - 1}.mixer.Wq.bias"] = bqkv[: self.embed_dim]
- state_dict[f"blocks.{n_layer - 1}.mixer.Wkv.bias"] = bqkv[self.embed_dim :]
- return super().load_state_dict(state_dict, strict=strict)
- def init_weights_vit_timm(module: nn.Module, name: str = ""):
- """ViT weight initialization, original timm impl (for reproducibility)"""
- if isinstance(module, nn.Linear):
- trunc_normal_(module.weight, std=0.02)
- if module.bias is not None:
- nn.init.zeros_(module.bias)
- elif hasattr(module, "init_weights"):
- module.init_weights()
- def vit_base_patch16_224(pretrained=False, **kwargs):
- """ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
- ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
- """
- assert not pretrained
- model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
- model = VisionTransformer(**model_kwargs)
- return model
|