123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116 |
- # Copyright (c) 2023, Tri Dao.
- import math
- import re
- from collections import OrderedDict
- import torch
- import torch.nn.functional as F
- from transformers import GPT2Config, OPTConfig
- def remap_state_dict_hf_opt(state_dict, config):
- def key_mapping_model(key):
- key = re.sub(r"^model.decoder.", "transformer.", key)
- # The OPT-350m model uses '^decoder' instead of '^model.decoder'
- key = re.sub(r"^decoder.", "transformer.", key)
- return key
- state_dict = OrderedDict((key_mapping_model(k), v) for k, v in state_dict.items())
- # Word embedding and position embedding
- def key_mapping_emb(key):
- key = re.sub(r"^transformer.embed_tokens.", "transformer.embeddings.word_embeddings.", key)
- # The OPT-350m model uses has project_in and project_out
- key = re.sub(r"^transformer.project_in.", "transformer.embeddings.project_in.", key)
- key = re.sub(r"^transformer.project_out.", "project_out.", key)
- key = re.sub(
- r"^transformer.embed_positions.", "transformer.embeddings.position_embeddings.", key
- )
- return key
- state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
- # OPT uses the first 2 indices of pos_emb for padding tokens
- pos_embeddings = state_dict.pop("transformer.embeddings.position_embeddings.weight")
- state_dict["transformer.embeddings.position_embeddings.weight"] = pos_embeddings[2:]
- word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight")
- # It's possible that vocab_size is padded to be a multiple of 8, for example.
- pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
- vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
- state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
- word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
- )
- state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"]
- # LayerNorm
- def key_mapping_ln(key):
- key = re.sub(r"^transformer.final_layer_norm.", r"transformer.ln_f.", key)
- # The OPT-175B checkpoint calls this 'decoder.layer_norm' instead of 'decoder.final_layer_norm'
- key = re.sub(r"^transformer.layer_norm.", r"transformer.ln_f.", key)
- key = re.sub(
- r"^transformer.layers.(\d+).self_attn_layer_norm.", r"transformer.layers.\1.norm1.", key
- )
- key = re.sub(
- r"^transformer.layers.(\d+).final_layer_norm.", r"transformer.layers.\1.norm2.", key
- )
- return key
- state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
- # MLP
- def key_mapping_mlp(key):
- return re.sub(
- r"^transformer.layers.(\d+).fc(1|2).", r"transformer.layers.\1.mlp.fc\2.", key
- )
- state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
- # Attention
- for l in range(config.n_layer):
- Wq = state_dict.pop(f"transformer.layers.{l}.self_attn.q_proj.weight")
- Wk = state_dict.pop(f"transformer.layers.{l}.self_attn.k_proj.weight")
- Wv = state_dict.pop(f"transformer.layers.{l}.self_attn.v_proj.weight")
- bq = state_dict.pop(f"transformer.layers.{l}.self_attn.q_proj.bias")
- bk = state_dict.pop(f"transformer.layers.{l}.self_attn.k_proj.bias")
- bv = state_dict.pop(f"transformer.layers.{l}.self_attn.v_proj.bias")
- state_dict[f"transformer.layers.{l}.mixer.Wqkv.weight"] = torch.cat([Wq, Wk, Wv], dim=0)
- state_dict[f"transformer.layers.{l}.mixer.Wqkv.bias"] = torch.cat([bq, bk, bv], dim=0)
- def key_mapping_attn(key):
- return re.sub(
- r"^transformer.layers.(\d+).self_attn.out_proj.",
- r"transformer.layers.\1.mixer.out_proj.",
- key,
- )
- state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
- return state_dict
- def opt_config_to_gpt2_config(opt_config: OPTConfig) -> GPT2Config:
- assert opt_config.layerdrop == 0.0
- assert opt_config.layer_norm_elementwise_affine
- word_embed_proj_dim = (
- None
- if opt_config.word_embed_proj_dim == opt_config.hidden_size
- else opt_config.word_embed_proj_dim
- )
- return GPT2Config(
- vocab_size=opt_config.vocab_size,
- n_positions=opt_config.max_position_embeddings,
- n_embd=opt_config.hidden_size,
- n_layer=opt_config.num_hidden_layers,
- n_head=opt_config.num_attention_heads,
- n_inner=opt_config.ffn_dim,
- activation_function=opt_config.activation_function,
- resid_pdrop=opt_config.dropout,
- # HF's implementation of OPT doesn't seem to have embedding dropout
- embd_pdrop=opt_config.dropout,
- attn_pdrop=opt_config.attention_dropout,
- initializer_range=opt_config.init_std,
- bos_token_id=opt_config.bos_token_id,
- eos_token_id=opt_config.eos_token_id,
- # These are new arguments not in the original GPT2Config
- prenorm=opt_config.do_layer_norm_before,
- word_embed_proj_dim=word_embed_proj_dim,
- )
|