123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422 |
- # Copyright (c) 2023, Tri Dao.
- import json
- import math
- import os
- import re
- from collections import OrderedDict
- from pathlib import Path
- from typing import Dict, List, Union
- import torch
- import torch.nn.functional as F
- from sentencepiece import SentencePieceProcessor
- from transformers import GPT2Config, LlamaConfig
- from einops import rearrange
- def remap_state_dict_meta_llama(
- state_dict: Dict[str, torch.Tensor], config: GPT2Config
- ) -> Dict[str, torch.Tensor]:
- """Convert the state_dict in Meta format to standard GPT format.
- This function modifies state_dict in place.
- """
- def key_mapping_layers(key):
- return f"transformer.{key}" if not key.startswith("output.") else key
- state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
- # Word embedding
- def key_mapping_emb(key):
- return re.sub(
- r"^transformer.tok_embeddings.", "transformer.embeddings.word_embeddings.", key
- )
- state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
- word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight")
- # It's possible that vocab_size is padded to be a multiple of 8, for example.
- pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
- vocab_size = (
- math.ceil(word_embeddings.shape[0] / pad_vocab_size_multiple) * pad_vocab_size_multiple
- )
- state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
- word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
- )
- if getattr(config, "tie_word_embeddings"):
- state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"]
- else:
- output_embeddings = state_dict.pop("output.weight")
- # Need to recompute vocab_size since LLaMa shards the word embeddings and output embeddings
- # differently.
- vocab_size = (
- math.ceil(output_embeddings.shape[0] / pad_vocab_size_multiple)
- * pad_vocab_size_multiple
- )
- # It's possible that vocab_size is padded to be a multiple of 8, for example.
- state_dict["lm_head.weight"] = F.pad(
- output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
- )
- # LayerNorm
- def key_mapping_ln(key):
- key = re.sub(r"^transformer.norm.", r"transformer.ln_f.", key)
- key = re.sub(
- r"^transformer.layers.(\d+).attention_norm.",
- r"transformer.layers.\1.norm1.",
- key,
- )
- key = re.sub(r"^transformer.layers.(\d+).ffn_norm.", r"transformer.layers.\1.norm2.", key)
- return key
- state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
- # MLP
- for l in range(config.n_layer):
- w1 = state_dict.pop(f"transformer.layers.{l}.feed_forward.w1.weight")
- w3 = state_dict.pop(f"transformer.layers.{l}.feed_forward.w3.weight")
- # Our ordering is different
- state_dict[f"transformer.layers.{l}.mlp.fc1.weight"] = torch.cat([w3, w1], dim=0)
- def key_mapping_mlp(key):
- return re.sub(
- r"^transformer.layers.(\d+).feed_forward.w2.",
- r"transformer.layers.\1.mlp.fc2.",
- key,
- )
- state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
- # Attention
- for l in range(config.n_layer):
- Wq = state_dict.pop(f"transformer.layers.{l}.attention.wq.weight")
- Wk = state_dict.pop(f"transformer.layers.{l}.attention.wk.weight")
- Wv = state_dict.pop(f"transformer.layers.{l}.attention.wv.weight")
- state_dict[f"transformer.layers.{l}.mixer.Wqkv.weight"] = torch.cat([Wq, Wk, Wv], dim=0)
- # We don't store these
- state_dict.pop(f"transformer.layers.{l}.attention.inner_attention.rope.freqs", None)
- def key_mapping_attn(key):
- return re.sub(
- r"^transformer.layers.(\d+).attention.wo.",
- r"transformer.layers.\1.mixer.out_proj.",
- key,
- )
- state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
- state_dict.pop("transformer.rope.freqs", None)
- return state_dict
- def remap_state_dict_hf_llama(
- state_dict: Dict[str, torch.Tensor], config: GPT2Config
- ) -> Dict[str, torch.Tensor]:
- """Convert the state_dict in Hugging Face format to standard GPT format.
- This function modifies state_dict in place.
- """
- # Embedding
- def key_mapping_emb(key):
- return re.sub(r"^model.embed_tokens.", "transformer.embeddings.word_embeddings.", key)
- state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
- word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight")
- # It's possible that vocab_size is padded to be a multiple of 8, for example.
- pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
- vocab_size = (
- math.ceil(word_embeddings.shape[0] / pad_vocab_size_multiple) * pad_vocab_size_multiple
- )
- state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
- word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
- )
- # LM head
- if getattr(config, "tie_word_embeddings"):
- state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"]
- else:
- output_embeddings = state_dict.pop("lm_head.weight")
- # Need to recompute vocab_size since LLaMa shards the word embeddings and output embeddings
- # differently.
- vocab_size = (
- math.ceil(output_embeddings.shape[0] / pad_vocab_size_multiple)
- * pad_vocab_size_multiple
- )
- # It's possible that vocab_size is padded to be a multiple of 8, for example.
- state_dict["lm_head.weight"] = F.pad(
- output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
- )
- # MLP
- for l in range(config.n_layer):
- # Fusing weights this way based on difference in the following:
- # https://github.com/huggingface/transformers/blob/b42010bb1d3cbf262d27e0a328661885be46dfdb/src/transformers/models/llama/modeling_llama.py#L220
- # https://github.com/Dao-AILab/flash-attention/blob/c60851a8253257eb970e06a022c82517a8033e8c/flash_attn/modules/mlp.py#L115
- w1 = state_dict.pop(f"model.layers.{l}.mlp.gate_proj.weight")
- w3 = state_dict.pop(f"model.layers.{l}.mlp.up_proj.weight")
- state_dict[f"transformer.layers.{l}.mlp.fc1.weight"] = torch.cat([w3, w1], dim=0)
- def key_mapping_mlp(key):
- return re.sub(
- r"^model.layers.(\d+).mlp.down_proj.",
- r"transformer.layers.\1.mlp.fc2.",
- key,
- )
- state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
- # LayerNorm
- def key_mapping_ln(key):
- key = re.sub(r"^model.norm.", r"transformer.ln_f.", key)
- key = re.sub(
- r"^model.layers.(\d+).input_layernorm.",
- r"transformer.layers.\1.norm1.",
- key,
- )
- key = re.sub(
- r"^model.layers.(\d+).post_attention_layernorm.",
- r"transformer.layers.\1.norm2.",
- key,
- )
- return key
- state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
- def inv_permute(w):
- # Inverse of permute implemented in:
- # https://github.com/huggingface/transformers/blob/b42010bb1d3cbf262d27e0a328661885be46dfdb/src/transformers/models/llama/convert_llama_weights_to_hf.py#L114
- return rearrange(
- w, "(h two d) n -> (h d two) n", d=config.n_embd // config.n_head // 2, two=2
- )
- # Attention
- for l in range(config.n_layer):
- Wq = state_dict.pop(f"model.layers.{l}.self_attn.q_proj.weight")
- Wk = state_dict.pop(f"model.layers.{l}.self_attn.k_proj.weight")
- Wv = state_dict.pop(f"model.layers.{l}.self_attn.v_proj.weight")
- state_dict[f"transformer.layers.{l}.mixer.Wqkv.weight"] = torch.cat(
- [inv_permute(Wq), inv_permute(Wk), Wv], dim=0
- )
- # We don't store these
- state_dict.pop(f"model.layers.{l}.self_attn.rotary_emb.inv_freq", None)
- def key_mapping_attn(key):
- return re.sub(
- r"^model.layers.(\d+).self_attn.o_proj.",
- r"transformer.layers.\1.mixer.out_proj.",
- key,
- )
- state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
- return state_dict
- def inv_remap_state_dict_hf_llama(
- state_dict: Dict[str, torch.Tensor], config: GPT2Config
- ) -> Dict[str, torch.Tensor]:
- """Convert the state_dict in standard GPT format to Hugging Face format.
- This function is meant to be the inverse of remap_state_dict_hf_llama, up to a
- multiplier pad in the embedding and lm_head. That is if the original embedding
- isn't a multiple of pad_vocab_size_multiple, then
- inv_remap_state_dict_hf_llama(remap_state_dict_hf_llama(state_dict)) != state_dict.
- This function modifies state_dict in place.
- """
- # Embedding
- def key_mapping_emb(key):
- return re.sub(r"^transformer.embeddings.word_embeddings.", "model.embed_tokens.", key)
- state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
- word_embeddings = state_dict.pop("model.embed_tokens.weight")
- pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
- vocab_size = (
- math.ceil(word_embeddings.shape[0] / pad_vocab_size_multiple) * pad_vocab_size_multiple
- )
- state_dict["model.embed_tokens.weight"] = F.pad(
- word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
- )
- # LM head
- if getattr(config, "tie_word_embeddings"):
- state_dict["lm_head.weight"] = state_dict["model.embed_tokens.weight"]
- else:
- output_embeddings = state_dict.pop("lm_head.weight")
- vocab_size = (
- math.ceil(output_embeddings.shape[0] / pad_vocab_size_multiple)
- * pad_vocab_size_multiple
- )
- state_dict["lm_head.weight"] = F.pad(
- output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
- )
- # MLP
- for l in range(config.n_layer):
- w3, w1 = torch.chunk(
- state_dict.pop(f"transformer.layers.{l}.mlp.fc1.weight"), chunks=2, dim=0
- )
- state_dict[f"model.layers.{l}.mlp.gate_proj.weight"] = w1
- state_dict[f"model.layers.{l}.mlp.up_proj.weight"] = w3
- def key_mapping_mlp(key):
- return re.sub(
- r"^transformer.layers.(\d+).mlp.fc2.",
- r"model.layers.\1.mlp.down_proj.",
- key,
- )
- state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
- # LayerNorm
- def key_mapping_ln(key):
- key = re.sub(r"^transformer.ln_f.", r"model.norm.", key)
- key = re.sub(
- r"^transformer.layers.(\d+).norm1.",
- r"model.layers.\1.input_layernorm.",
- key,
- )
- key = re.sub(
- r"^transformer.layers.(\d+).norm2.",
- r"model.layers.\1.post_attention_layernorm.",
- key,
- )
- return key
- state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
- def permute(w):
- return rearrange(
- w, "(h d two) n -> (h two d) n", d=config.n_embd // config.n_head // 2, two=2
- )
- n_head = config.n_head
- n_head_kv = getattr(config, "n_head_kv", n_head)
- embed_dim = config.hidden_size
- head_dim = embed_dim // n_head
- q_dim = n_head * head_dim
- k_dim = v_dim = n_head_kv * head_dim
- # Attention
- for l in range(config.n_layer):
- Wqkv = state_dict.pop(f"transformer.layers.{l}.mixer.Wqkv.weight")
- Wq = Wqkv[:q_dim]
- Wk = Wqkv[q_dim : q_dim + k_dim]
- Wv = Wqkv[q_dim + k_dim : q_dim + k_dim + v_dim]
- state_dict[f"model.layers.{l}.self_attn.q_proj.weight"] = permute(Wq)
- state_dict[f"model.layers.{l}.self_attn.k_proj.weight"] = permute(Wk)
- state_dict[f"model.layers.{l}.self_attn.v_proj.weight"] = Wv
- state_dict.pop(f"transformer.layers.{l}.attention.inner_attention.rope.freqs", None)
- def key_mapping_attn(key):
- return re.sub(
- r"^transformer.layers.(\d+).mixer.out_proj.",
- r"model.layers.\1.self_attn.o_proj.",
- key,
- )
- state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
- return state_dict
- def config_from_meta_checkpoint(
- checkpoint_path: Union[str, os.PathLike], model_name: str
- ) -> LlamaConfig:
- """Load a LlamaConfig from a checkpoint path."""
- with open(Path(checkpoint_path) / model_name / "params.json") as f:
- params = json.load(f)
- config = LlamaConfig(
- hidden_size=params["dim"],
- intermediate_size=None,
- num_attention_heads=params["n_heads"],
- num_hidden_layers=params["n_layers"],
- rms_norm_eps=params["norm_eps"],
- num_key_value_heads=params.get("n_kv_heads", None),
- )
- multiple_of = params.get("multiple_of", 1)
- ffn_dim_multiplier = params.get("ffn_dim_multiplier", None)
- # Compute the hidden dimension of the MLP
- # https://github.com/facebookresearch/llama/blob/1a240688810f8036049e8da36b073f63d2ac552c/llama/model.py#L224
- intermediate_size = 4 * config.hidden_size
- # https://github.com/facebookresearch/llama/blob/1a240688810f8036049e8da36b073f63d2ac552c/llama/model.py#L195-L199
- intermediate_size = int(2 * intermediate_size / 3)
- # custom dim factor multiplier
- if ffn_dim_multiplier is not None:
- intermediate_size = int(ffn_dim_multiplier * intermediate_size)
- intermediate_size = multiple_of * ((intermediate_size + multiple_of - 1) // multiple_of)
- config.intermediate_size = intermediate_size
- if "rope_theta" in params:
- config.rotary_emb_base = params["rope_theta"]
- config.vocab_size = 32000
- # some CodeLLaMa have vocab_size 32000, some 32016
- # Sadly it's not specified in the `params.json` file :(
- tokenizer = Path(checkpoint_path) / model_name / "tokenizer.model"
- if tokenizer.is_file():
- config.vocab_size = SentencePieceProcessor(str(tokenizer)).vocab_size()
- return config
- def config_from_hf_checkpoint(
- checkpoint_path: Union[str, os.PathLike], model_name: str
- ) -> LlamaConfig:
- return LlamaConfig.from_pretrained(Path(checkpoint_path) / f"{model_name}-hf" / "config.json")
- def config_from_checkpoint(
- checkpoint_path: Union[str, os.PathLike], model_name: str, checkpoint_format="meta"
- ) -> LlamaConfig:
- if checkpoint_format == "meta":
- return config_from_meta_checkpoint(checkpoint_path, model_name)
- else:
- return config_from_hf_checkpoint(checkpoint_path, model_name)
- def state_dicts_from_checkpoint(
- checkpoint_path: Union[str, os.PathLike], model_name: str
- ) -> List[dict]:
- # Need to sort, otherwise we mess up the ordering and the weights are wrong
- return [
- torch.load(path, map_location="cpu")
- for path in sorted((Path(checkpoint_path) / model_name).glob("consolidated.*.pth"))
- ]
- def llama_config_to_gpt2_config(llama_config: LlamaConfig) -> GPT2Config:
- return GPT2Config(
- vocab_size=llama_config.vocab_size,
- n_positions=0, # No absolute position embedding
- n_embd=llama_config.hidden_size,
- n_layer=llama_config.num_hidden_layers,
- n_head=llama_config.num_attention_heads,
- n_inner=llama_config.intermediate_size,
- activation_function="swiglu", # Hardcode since HF calls it 'silu'
- # Llama doesn't have dropout, idk if it's because they only release the inference code
- resid_pdrop=0.0,
- embd_pdrop=0.0,
- attn_pdrop=0.0,
- layer_norm_epsilon=llama_config.rms_norm_eps,
- initializer_range=llama_config.initializer_range,
- bos_token_id=llama_config.bos_token_id,
- eos_token_id=llama_config.eos_token_id,
- # These are new arguments not in the original GPT2Config
- pad_token_id=llama_config.pad_token_id, # Idk if this does anything
- rms_norm=True,
- rotary_emb_fraction=1.0,
- rotary_emb_interleaved=True,
- tie_word_embeddings=False,
- qkv_proj_bias=False,
- out_proj_bias=False,
- mlp_fc1_bias=False,
- mlp_fc2_bias=False,
- rotary_emb_base=getattr(llama_config, "rotary_emb_base", 10000.0),
- n_head_kv=llama_config.num_key_value_heads,
- )
|