123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124 |
- # Copyright (c) 2023, Tri Dao.
- import math
- import re
- from collections import OrderedDict
- import torch
- import torch.nn.functional as F
- from einops import rearrange
- from transformers import GPT2Config, GPTNeoXConfig
- def remap_state_dict_hf_gpt_neox(state_dict, config):
- def key_mapping_layers(key):
- return re.sub(r"^gpt_neox.", "transformer.", key)
- state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
- # Word embedding
- def key_mapping_emb(key):
- return re.sub(r"^transformer.embed_in.", "transformer.embeddings.word_embeddings.", key)
- state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
- word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight")
- # It's possible that vocab_size is padded to be a multiple of 8, for example.
- pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
- vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
- state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
- word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
- )
- if getattr(config, "tie_word_embeddings", False):
- state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"]
- else:
- output_embeddings = state_dict.pop("embed_out.weight")
- # It's possible that vocab_size is padded to be a multiple of 8, for example.
- state_dict["lm_head.weight"] = F.pad(
- output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
- )
- # LayerNorm
- def key_mapping_ln(key):
- key = re.sub(r"^transformer.final_layer_norm.", r"transformer.ln_f.", key)
- key = re.sub(
- r"^transformer.layers.(\d+).input_layernorm.", r"transformer.layers.\1.norm1.", key
- )
- key = re.sub(
- r"^transformer.layers.(\d+).post_attention_layernorm.",
- r"transformer.layers.\1.norm2.",
- key,
- )
- return key
- state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
- # MLP
- def key_mapping_mlp(key):
- key = re.sub(
- r"^transformer.layers.(\d+).mlp.dense_h_to_4h.", r"transformer.layers.\1.mlp.fc1.", key
- )
- key = re.sub(
- r"^transformer.layers.(\d+).mlp.dense_4h_to_h.", r"transformer.layers.\1.mlp.fc2.", key
- )
- return key
- state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
- # Attention
- for l in range(config.n_layer):
- # We don't store these biases
- state_dict.pop(f"transformer.layers.{l}.attention.bias")
- state_dict.pop(f"transformer.layers.{l}.attention.masked_bias")
- # We don't store these
- state_dict.pop(f"transformer.layers.{l}.attention.rotary_emb.inv_freq", None)
- # GPT-NeoX stores Wqkv as ((nheads 3 headdim), hidden_dim)
- # while we store Wqkv as ((3 nheads headdim), hidden_dim)
- headdim = config.hidden_size // config.num_attention_heads
- Wqkv = state_dict.pop(f"transformer.layers.{l}.attention.query_key_value.weight")
- state_dict[f"transformer.layers.{l}.mixer.Wqkv.weight"] = rearrange(
- Wqkv,
- "(nheads three headdim) ... -> (three nheads headdim) ...",
- three=3,
- headdim=headdim,
- )
- bqkv = state_dict.pop(f"transformer.layers.{l}.attention.query_key_value.bias")
- state_dict[f"transformer.layers.{l}.mixer.Wqkv.bias"] = rearrange(
- bqkv, "(nheads three headdim) -> (three nheads headdim)", three=3, headdim=headdim
- )
- def key_mapping_attn(key):
- key = re.sub(
- r"^transformer.layers.(\d+).attention.dense.",
- r"transformer.layers.\1.mixer.out_proj.",
- key,
- )
- return key
- state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
- return state_dict
- def gpt_neox_config_to_gpt2_config(gpt_neox_config: GPTNeoXConfig) -> GPT2Config:
- assert gpt_neox_config.rotary_emb_base == 10000
- return GPT2Config(
- vocab_size=gpt_neox_config.vocab_size,
- n_positions=0, # No absolute position embedding
- n_embd=gpt_neox_config.hidden_size,
- n_layer=gpt_neox_config.num_hidden_layers,
- n_head=gpt_neox_config.num_attention_heads,
- n_inner=gpt_neox_config.intermediate_size,
- activation_function=gpt_neox_config.hidden_act,
- resid_pdrop=0.0, # No dropout
- embd_pdrop=0.0,
- attn_pdrop=0.0,
- layer_norm_epsilon=gpt_neox_config.layer_norm_eps,
- initializer_range=gpt_neox_config.initializer_range,
- bos_token_id=gpt_neox_config.bos_token_id,
- eos_token_id=gpt_neox_config.eos_token_id,
- # These are new arguments not in the original GPT2Config
- prenorm=True,
- parallel_block=gpt_neox_config.use_parallel_residual,
- parallel_block_tied_norm=False,
- rotary_emb_fraction=gpt_neox_config.rotary_pct,
- tie_word_embeddings=gpt_neox_config.tie_word_embeddings,
- )
|