123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- # Copyright (c) 2023, Tri Dao.
- import math
- import json
- import re
- from pathlib import Path
- from collections import OrderedDict
- import torch
- import torch.nn.functional as F
- from einops import rearrange
- from transformers import GPT2Config, AutoConfig, PretrainedConfig
- def remap_state_dict_hf_btlm(state_dict, config):
- # Word embedding and position embedding
- def key_mapping_pos_emb(key):
- return re.sub(r"^transformer.wpe.", "transformer.embeddings.position_embeddings.", key)
- if "transformer.wpe.weight" in state_dict:
- state_dict = OrderedDict((key_mapping_pos_emb(k), v) for k, v in state_dict.items())
- word_embeddings = state_dict.pop("transformer.wte.weight")
- # It's possible that vocab_size is padded to be a multiple of 8, for example.
- pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
- vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
- state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
- word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
- )
- state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"]
- # LayerNorm
- def key_mapping_ln(key):
- key = re.sub(r"^transformer.ln_f.(weight|bias)", r"transformer.ln_f.\1", key)
- key = re.sub(r"^transformer.h.(\d+).ln_(1|2).(weight|bias)", r"transformer.layers.\1.norm\2.\3", key)
- return key
- state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
- # MLP
- for d in range(config.num_hidden_layers):
- W1 = state_dict.pop(f"transformer.h.{d}.mlp.c_fc.weight")
- W3 = state_dict.pop(f"transformer.h.{d}.mlp.c_fc2.weight")
- state_dict[f"transformer.layers.{d}.mlp.fc1.weight"] = torch.cat([W1.t(), W3.t()], dim=0)
- b1 = state_dict.pop(f"transformer.h.{d}.mlp.c_fc.bias")
- b3 = state_dict.pop(f"transformer.h.{d}.mlp.c_fc2.bias")
- state_dict[f"transformer.layers.{d}.mlp.fc1.bias"] = torch.cat([b1, b3], dim=0)
- W2 = state_dict.pop(f"transformer.h.{d}.mlp.c_proj.weight")
- state_dict[f"transformer.layers.{d}.mlp.fc2.weight"] = W2.t()
- def key_mapping_mlp(key):
- key = re.sub(r"^transformer.h.(\d+).mlp.c_proj.bias", r"transformer.layers.\1.mlp.fc2.bias", key)
- return key
- state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
- # Attention
- for d in range(config.num_hidden_layers):
- Wqkv = state_dict.pop(f"transformer.h.{d}.attn.c_attn.weight")
- state_dict[f"transformer.layers.{d}.mixer.Wqkv.weight"] = Wqkv.t()
- Wout = state_dict.pop(f"transformer.h.{d}.attn.c_proj.weight")
- state_dict[f"transformer.layers.{d}.mixer.out_proj.weight"] = Wout.t()
- state_dict.pop(f"transformer.relative_pe.slopes") # We don't store the Alibi slopes
- def key_mapping_attn(key):
- key = re.sub(r"^transformer.h.(\d+).attn.c_attn.bias", r"transformer.layers.\1.mixer.Wqkv.bias", key)
- key = re.sub(
- r"^transformer.h.(\d+).attn.c_proj.bias", r"transformer.layers.\1.mixer.out_proj.bias", key
- )
- return key
- state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
- return state_dict
- def btlm_config_to_gpt2_config(btlm_config: PretrainedConfig) -> GPT2Config:
- return GPT2Config(
- vocab_size=btlm_config.vocab_size,
- n_positions=0 if btlm_config.position_embedding_type == "alibi" else btlm_config.n_positions,
- n_embd=btlm_config.hidden_size,
- n_layer=btlm_config.num_hidden_layers,
- n_head=btlm_config.num_attention_heads,
- n_inner=btlm_config.n_inner,
- activation_function=btlm_config.activation_function,
- resid_pdrop=btlm_config.resid_pdrop,
- embd_pdrop=btlm_config.embd_pdrop,
- attn_pdrop=btlm_config.attn_pdrop,
- layer_norm_epsilon=btlm_config.layer_norm_epsilon,
- initializer_range=btlm_config.initializer_range,
- bos_token_id=btlm_config.bos_token_id,
- eos_token_id=btlm_config.eos_token_id,
- # These are new arguments not in the original GPT2Config
- use_alibi=btlm_config.position_embedding_type == "alibi",
- use_flash_attn=btlm_config.position_embedding_type == "alibi", # Alibi code path requires flash_attn
- mup_width_scale=btlm_config.mup_width_scale,
- mup_embeddings_multiplier=btlm_config.mup_embeddings_scale,
- mup_output_multiplier=btlm_config.mup_output_alpha,
- mup_scale_qk_dot_by_d=btlm_config.mup_scale_qk_dot_by_d,
- mlp_multiple_of=1,
- )
|