123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151 |
- # Copyright (c) 2023, GGGGGGXY, Tri Dao.
- import math
- import json
- import re
- from pathlib import Path
- from collections import OrderedDict
- import torch
- import torch.nn.functional as F
- from einops import rearrange
- from transformers import GPT2Config, AutoConfig, PretrainedConfig
- def remap_state_dict_hf_baichuan(state_dict, config):
- def key_mapping_layers(key):
- return re.sub(r"^model.", "transformer.", key)
- state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
- # Word embedding
- def key_mapping_emb(key):
- return re.sub(
- r"^transformer.embed_tokens.",
- "transformer.embeddings.word_embeddings.",
- key,
- )
- state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
- word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight")
- # It's possible that vocab_size is padded to be a multiple of 8, for example.
- pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
- vocab_size = (
- math.ceil(word_embeddings.shape[0] / pad_vocab_size_multiple)
- * pad_vocab_size_multiple
- )
- state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
- word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
- )
- if getattr(config, "tie_word_embeddings"):
- state_dict["lm_head.weight"] = state_dict[
- "transformer.embeddings.word_embeddings.weight"
- ]
- else:
- output_embeddings = state_dict.pop("lm_head.weight")
- # Need to recompute vocab_size since Baichuan shards the word embeddings and output embeddings
- # differently.
- vocab_size = (
- math.ceil(output_embeddings.shape[0] / pad_vocab_size_multiple)
- * pad_vocab_size_multiple
- )
- # It's possible that vocab_size is padded to be a multiple of 8, for example.
- state_dict["lm_head.weight"] = F.pad(
- output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
- )
- # LayerNorm
- def key_mapping_ln(key):
- key = re.sub(r"^transformer.norm.", r"transformer.ln_f.", key)
- key = re.sub(
- r"^transformer.layers.(\d+).input_layernorm.",
- r"transformer.layers.\1.norm1.",
- key,
- )
- key = re.sub(
- r"^transformer.layers.(\d+).post_attention_layernorm.",
- r"transformer.layers.\1.norm2.",
- key,
- )
- return key
- state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
- # MLP
- for l in range(config.n_layer):
- w1 = state_dict.pop(f"transformer.layers.{l}.mlp.gate_proj.weight")
- w3 = state_dict.pop(f"transformer.layers.{l}.mlp.up_proj.weight")
- # Our ordering is different
- state_dict[f"transformer.layers.{l}.mlp.fc1.weight"] = torch.cat(
- [w3, w1], dim=0
- )
- def key_mapping_mlp(key):
- return re.sub(
- r"^transformer.layers.(\d+).mlp.down_proj.",
- r"transformer.layers.\1.mlp.fc2.",
- key,
- )
- state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
- # Attention
- def key_mapping_attn(key):
- key = re.sub(
- r"^transformer.layers.(\d+).self_attn.W_pack.",
- r"transformer.layers.\1.mixer.Wqkv.",
- key,
- )
- key = re.sub(
- r"^transformer.layers.(\d+).self_attn.o_proj.",
- r"transformer.layers.\1.mixer.out_proj.",
- key,
- )
- return key
- state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
- for l in range(config.n_layer):
- # pop rotary_emb.inv_freq from state dict
- state_dict.pop(f"transformer.layers.{l}.self_attn.rotary_emb.inv_freq", None)
- return state_dict
- def baichuan_config_to_gpt2_config(baichuan_config: PretrainedConfig) -> GPT2Config:
- # HACK: the config doesn't have say whether it's rotary or alibi.
- # So we have to infer from the hidden size (7B -> rotary, 13B -> alibi).
- # HACK: the config doesn't have say whether it uses norm head.
- # So we have to infer from the vocab size
- # (v1, vocab size 64k, no norm head; v2, vocab size 128k, norm head).
- use_rotary = baichuan_config.hidden_size < 5000
- return GPT2Config(
- vocab_size=baichuan_config.vocab_size,
- n_positions=0, # No absolute position embedding
- n_embd=baichuan_config.hidden_size,
- n_layer=baichuan_config.num_hidden_layers,
- n_head=baichuan_config.num_attention_heads,
- n_inner=baichuan_config.intermediate_size,
- activation_function="swiglu", # Hardcode since HF calls it 'silu'
- # baichuan doesn't have dropout, idk if it's because they only release the inference code
- resid_pdrop=0.0,
- embd_pdrop=0.0,
- attn_pdrop=0.0,
- layer_norm_epsilon=baichuan_config.rms_norm_eps,
- initializer_range=baichuan_config.initializer_range,
- bos_token_id=baichuan_config.bos_token_id,
- eos_token_id=baichuan_config.eos_token_id,
- # These are new arguments not in the original GPT2Config
- pad_token_id=baichuan_config.pad_token_id, # Idk if this does anything
- rms_norm=True,
- rotary_emb_fraction=1.0 if use_rotary else 0.0,
- rotary_emb_interleaved=False,
- use_alibi=not use_rotary,
- use_flash_attn=not use_rotary, # Alibi code path requires flash_attn
- tie_word_embeddings=False,
- norm_head=baichuan_config.vocab_size > 70000,
- qkv_proj_bias=False,
- out_proj_bias=False,
- mlp_fc1_bias=False,
- mlp_fc2_bias=False,
- )
|