12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667 |
- # We use the same API as https://github.com/rwightman/pytorch-image-models/blob/v0.6.11/timm/models/layers/patch_embed.py
- # But we use nn.Linear instead of Conv2d and it's about 8x faster.
- from functools import partial
- import torch.nn as nn
- from einops import rearrange
- from torch import _assert
- from torch.nn.modules.utils import _pair
- try:
- from flash_attn.ops.fused_dense import FusedDense
- except ImportError:
- FusedDense = None
- class PatchEmbed(nn.Module):
- """2D Image to Patch Embedding"""
- def __init__(
- self,
- img_size=224,
- patch_size=16,
- in_chans=3,
- embed_dim=768,
- norm_layer=None,
- flatten=True,
- bias=True,
- fused_bias_fc=False,
- ):
- super().__init__()
- img_size = _pair(img_size)
- patch_size = _pair(patch_size)
- self.img_size = img_size
- self.patch_size = patch_size
- self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
- self.num_patches = self.grid_size[0] * self.grid_size[1]
- self.flatten = flatten
- if fused_bias_fc and FusedDense is None:
- raise ImportError("fused_dense is not installed")
- linear_cls = nn.Linear if not fused_bias_fc or not bias else FusedDense
- self.proj = linear_cls(in_chans * patch_size[0] * patch_size[1], embed_dim, bias=bias)
- self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
- def forward(self, x):
- _, _, H, W = x.shape
- _assert(
- H == self.img_size[0],
- f"Input image height ({H}) doesn't match model ({self.img_size[0]}).",
- )
- _assert(
- W == self.img_size[1],
- f"Input image width ({W}) doesn't match model ({self.img_size[1]}).",
- )
- x = self.proj(
- rearrange(
- x,
- "b c (h p1) (w p2) -> b h w (c p1 p2)",
- p1=self.patch_size[0],
- p2=self.patch_size[1],
- )
- )
- if self.flatten:
- x = rearrange(x, "b h w c -> b (h w) c")
- x = self.norm(x)
- return x
|