123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534 |
- #pragma once
- #include "ln.h"
- #include "ln_utils.cuh"
- #include "ln_kernel_traits.h"
- #include "static_switch.h"
- namespace layer_norm {
- template<typename Ktraits, bool Is_dropout, bool Has_colscale, bool Has_subset, bool Is_even_cols>
- __global__ __launch_bounds__(Ktraits::THREADS_PER_CTA)
- void ln_bwd_kernel(layer_norm::BwdParams params) {
- enum { ROWS_PER_CTA = Ktraits::ROWS_PER_CTA };
- enum { WARPS_M = Ktraits::WARPS_M };
- enum { WARPS_N = Ktraits::WARPS_N };
- enum { THREADS_PER_ROW = Ktraits::THREADS_PER_ROW };
- enum { COLS = Ktraits::COLS };
- enum { BYTES_PER_ROW = Ktraits::BYTES_PER_ROW };
- enum { LDGS = Ktraits::LDGS };
- enum { NUM_ELTS = Ktraits::ELTS_PER_LDG };
- enum { THREADS_PER_WARP = Ktraits::THREADS_PER_WARP };
- enum { CTAS_PER_ROW = Ktraits::CTAS_PER_ROW };
- using input_t = typename Ktraits::input_t;
- using compute_t = typename Ktraits::compute_t;
- using index_t = typename Ktraits::index_t;
- using mask_t = typename Ktraits::mask_t;
- using Ivec = typename Ktraits::Ivec;
- using Rvec = typename Ktraits::Rvec;
- using Ovec = typename Ktraits::Ovec;
- using Wvec = typename Ktraits::Wvec;
- using Cvec = typename Ktraits::Cvec;
- using Mvec = typename Ktraits::Mvec;
- using Reducer = typename Ktraits::Reducer;
- using reduce_t = typename Reducer::Type;
- extern __shared__ char smem_[];
- const bool has_residual = params.dresidual != nullptr;
- const bool prenorm = params.dx != nullptr;
- const index_t tidx = threadIdx.x;
- const index_t bidn = blockIdx.x % CTAS_PER_ROW;
- const index_t bidm = blockIdx.x / CTAS_PER_ROW;
- const index_t lane = tidx % THREADS_PER_WARP;
- const index_t warp = tidx / THREADS_PER_WARP;
- const index_t warp_m = warp / Ktraits::WARPS_N;
- const index_t warp_n = warp % Ktraits::WARPS_N;
- const index_t tid_r = warp_n * THREADS_PER_WARP + lane;
- const index_t r = bidm * Ktraits::ROWS_PER_CTA + warp_m;
- const index_t c = bidn * THREADS_PER_ROW + warp_n * THREADS_PER_WARP + lane;
- static_assert(COLS == THREADS_PER_ROW * LDGS * NUM_ELTS * CTAS_PER_ROW);
- const input_t *rowscale = static_cast<input_t *>(params.rowscale);
- const index_t *x0_subset = static_cast<index_t *>(params.x0_subset);
- const index_t *z_subset = static_cast<index_t *>(params.z_subset);
- Cvec dzy_sum[LDGS];
- Cvec dz_sum[LDGS];
- Cvec dcolscale_sum[LDGS];
- memset(dzy_sum, 0, sizeof(dzy_sum));
- memset(dz_sum, 0, sizeof(dz_sum));
- if (Has_colscale) { memset(dcolscale_sum, 0, sizeof(dcolscale_sum)); }
- compute_t * smem_wgrad = reinterpret_cast<compute_t*>(smem_);
- char *smem_dgrad = smem_ + Ktraits::SMEM_BYTES_WGRAD;
- Reducer reducer(params, bidm, bidn, warp_m, warp_n, lane, smem_dgrad);
- Sum<reduce_t> sum;
- const index_t num_valid_ldgs =
- ((params.cols / Ktraits::ELTS_PER_LDG) - 1 - c + Ktraits::VEC_COLS_PER_LDG) / Ktraits::VEC_COLS_PER_LDG;
- Wvec gamma[LDGS];
- Wvec colscale[LDGS];
- index_t idx = c;
- #pragma unroll
- for( int it = 0; it < LDGS; it++ ) {
- if (Is_even_cols || (it < num_valid_ldgs)) {
- gamma[it].load_from(params.gamma, idx);
- if (Has_colscale) { colscale[it].load_from(params.colscale, idx); }
- idx += Ktraits::VEC_COLS_PER_LDG;
- }
- }
- // TODO if ROWS_PER_CTA does not divide rows, we might get divergence in the
- // last blocks with syncthreads!
- // grid stride over rows
- #pragma unroll 1
- for( int row = r; row < params.rows; row += params.ctas_per_col * ROWS_PER_CTA ) {
- const compute_t mu_r = static_cast<const compute_t *>(params.mu)[row];
- const compute_t rs_r = static_cast<const compute_t *>(params.rs)[row];
- const compute_t rowscale_val = !Has_subset ? (params.rowscale == nullptr ? 1.0f : compute_t(rowscale[row])) : params.rowscale_const;
- const int row_z = !Has_subset ? row + 1 : z_subset[row];
- const int row_x0 = !Has_subset ? row + 1 : x0_subset[row];
- const bool load_dz = !Has_subset || row_z > 0;
- const bool save_dx0 = !Has_subset || row_x0 > 0;
- Mvec dmask[LDGS];
- Rvec dx[LDGS];
- compute_t dy[LDGS * NUM_ELTS];
- compute_t y[LDGS * NUM_ELTS];
- compute_t mdy_local = 0.f;
- compute_t mdyy_local = 0.f;
- // If dz is not loaded, then dy should be 0 and we don't care about the value of y.
- if (load_dz) {
- index_t idx_x = row * params.cols / Ktraits::ELTS_PER_LDG + c;
- index_t idx_z = !Has_subset ? idx_x : (load_dz ? (row_z - 1) * params.cols / Ktraits::ELTS_PER_LDG + c : 0);
- index_t idx_x0 = !Has_subset ? idx_x : (save_dx0 ? (row_x0 - 1) * params.cols / Ktraits::ELTS_PER_LDG + c : 0);
- #pragma unroll
- for( int it = 0; it < LDGS; it++ ) {
- if (Is_even_cols || (it < num_valid_ldgs)) {
- Rvec x;
- Ovec dz;
- dz.load_from(params.dz, !Has_subset ? idx_x : idx_z);
- if (prenorm) { dx[it].load_from(params.dx, idx_x); }
- x.load_from(params.x, idx_x);
- if (Is_dropout) { dmask[it].load_from(params.dmask, !Has_subset ? idx_x : idx_x0); }
- idx_x += Ktraits::VEC_COLS_PER_LDG;
- idx_z += Ktraits::VEC_COLS_PER_LDG;
- idx_x0 += Ktraits::VEC_COLS_PER_LDG;
- #pragma unroll
- for( int jt = 0; jt < NUM_ELTS; jt++ ) {
- compute_t x_tmp = x.data.elt[jt];
- compute_t y_tmp = rs_r * (x_tmp - (!params.is_rms_norm ? mu_r : 0.f));
- compute_t dy_tmp = compute_t(gamma[it].data.elt[jt]) * compute_t(dz.data.elt[jt]);
- compute_t dz_tmp = dz.data.elt[jt];
- mdy_local += dy_tmp;
- mdyy_local += dy_tmp * y_tmp;
- dy[it * NUM_ELTS + jt] = dy_tmp;
- y[it * NUM_ELTS + jt] = y_tmp;
- dzy_sum[it].data.elt[jt] += dz_tmp * y_tmp;
- dz_sum[it].data.elt[jt] += dz_tmp;
- }
- }
- }
- } else {
- index_t idx_x = row * params.cols / Ktraits::ELTS_PER_LDG + c;
- index_t idx_x0 = !Has_subset ? idx_x : (save_dx0 ? (row_x0 - 1) * params.cols / Ktraits::ELTS_PER_LDG + c : 0);
- #pragma unroll
- for( int it = 0; it < LDGS; it++ ) {
- if (Is_even_cols || (it < num_valid_ldgs)) {
- if (prenorm) { dx[it].load_from(params.dx, idx_x); }
- if (Is_dropout) { dmask[it].load_from(params.dmask, !Has_subset ? idx_x : idx_x0); }
- idx_x += Ktraits::VEC_COLS_PER_LDG;
- idx_x0 += Ktraits::VEC_COLS_PER_LDG;
- }
- }
- }
- reduce_t result = reducer.allreduce({mdy_local, mdyy_local}, sum);
- mdy_local = layer_norm::Get<0>::of<reduce_t, compute_t>(result) * params.inverse_cols;
- mdyy_local = layer_norm::Get<1>::of<reduce_t, compute_t>(result) * params.inverse_cols;
- index_t idx_x = row * params.cols / Ktraits::ELTS_PER_LDG + c;
- index_t idx_x0 = !Has_subset ? idx_x : (save_dx0 ? (row_x0 - 1) * params.cols / Ktraits::ELTS_PER_LDG + c : 0);
- #pragma unroll
- for( int it = 0; it < LDGS; it++ ) {
- if (Is_even_cols || (it < num_valid_ldgs)) {
- Ivec dx0;
- Rvec dresidual;
- Ivec x0;
- if (Has_colscale && save_dx0) { x0.load_from(params.x0, !Has_subset ? idx_x : idx_x0); }
- #pragma unroll
- for( int jt = 0; jt < NUM_ELTS; jt++ ) {
- compute_t dx_tmp_res;
- if (load_dz) {
- compute_t dy_tmp = dy[it * NUM_ELTS + jt];
- compute_t y_tmp = y[it * NUM_ELTS + jt];
- compute_t dx_tmp = rs_r * (dy_tmp - (mdyy_local * y_tmp + (!params.is_rms_norm ? mdy_local : 0.f)));
- dx_tmp_res = prenorm ? dx_tmp + compute_t(dx[it].data.elt[jt]) : dx_tmp;
- } else {
- dx_tmp_res = prenorm ? compute_t(dx[it].data.elt[jt]) : 0.f;
- }
- if (has_residual) { dresidual.data.elt[jt] = dx_tmp_res; }
- if (save_dx0) {
- compute_t dx0_tmp_res = dx_tmp_res * rowscale_val;
- if (Is_dropout) {
- dx0_tmp_res *= params.dropout_scale;
- if (Has_colscale) {
- dcolscale_sum[it].data.elt[jt] += dmask[it].data.elt[jt] ? dx0_tmp_res * compute_t(x0.data.elt[jt]) : 0.f;
- dx0.data.elt[jt] = dmask[it].data.elt[jt] ? dx0_tmp_res * compute_t(colscale[it].data.elt[jt]) : 0.f;
- } else {
- dx0.data.elt[jt] = dmask[it].data.elt[jt] ? dx0_tmp_res : 0.f;
- }
- } else {
- if (Has_colscale) {
- dcolscale_sum[it].data.elt[jt] += dx0_tmp_res * compute_t(x0.data.elt[jt]);
- dx0.data.elt[jt] = dx0_tmp_res * compute_t(colscale[it].data.elt[jt]);
- } else {
- dx0.data.elt[jt] = dx0_tmp_res;
- }
- }
- }
- }
- if (has_residual) { dresidual.store_to(params.dresidual, idx_x); }
- if (save_dx0) { dx0.store_to(params.dx0, !Has_subset ? idx_x : idx_x0); }
- idx_x += Ktraits::VEC_COLS_PER_LDG;
- idx_x0 += Ktraits::VEC_COLS_PER_LDG;
- }
- }
- } // end: grid stride loop
- if( WARPS_M == 1 ) {
- idx = r * params.cols / Ktraits::ELTS_PER_LDG + c;
- #pragma unroll
- for( int it = 0; it < LDGS; it++ ) {
- if (Is_even_cols || (it < num_valid_ldgs)) {
- dz_sum[it].store_to(params.dbeta_part, idx);
- dzy_sum[it].store_to(params.dgamma_part, idx);
- if (Has_colscale) { dcolscale_sum[it].store_to(params.dcolscale_part, idx); }
- idx += Ktraits::VEC_COLS_PER_LDG;
- }
- }
- } else {
- static_assert(WARPS_M == 1 || Ktraits::CTAS_PER_ROW == 1, "Multiple rows per CTA not supported for Multi-CTA.");
- // Finalize reduction of part dgamma and dbeta for this CTA
- // by reducing over the rows held across the WARPS_M warps
- // Assumption: blockSize divides hidden size.
- enum { NUM_RES = COLS / Ktraits::THREADS_PER_CTA };
- static_assert(NUM_RES * Ktraits::THREADS_PER_CTA == COLS, "");
- idx = warp_m * Ktraits::VEC_COLS + tid_r;
- #pragma unroll
- for( int it = 0; it < LDGS; it++ ) {
- dz_sum[it].store_to(smem_wgrad, idx);
- idx += THREADS_PER_ROW;
- }
- __syncthreads();
- compute_t cta_dz_sum[NUM_RES];
- memset(cta_dz_sum, 0, sizeof(compute_t) * NUM_RES);
- for( int it = 0; it < ROWS_PER_CTA; it++ ) {
- for( int jt = 0; jt < NUM_RES; jt++ ) {
- cta_dz_sum[jt] += smem_wgrad[it * COLS + tidx + jt * Ktraits::THREADS_PER_CTA];
- }
- }
- __syncthreads();
- idx = warp_m * Ktraits::VEC_COLS + tid_r;
- #pragma unroll
- for( int it = 0; it < LDGS; it++ ) {
- dzy_sum[it].store_to(smem_wgrad, idx);
- idx += THREADS_PER_ROW;
- }
- __syncthreads();
- compute_t cta_dzy_sum[NUM_RES];
- memset(cta_dzy_sum, 0, sizeof(compute_t) * NUM_RES);
- for( int it = 0; it < ROWS_PER_CTA; it++ ) {
- for( int jt = 0; jt < NUM_RES; jt++ ) {
- cta_dzy_sum[jt] += smem_wgrad[it * COLS + tidx + jt * Ktraits::THREADS_PER_CTA];
- }
- }
- compute_t cta_dcolscale_sum[NUM_RES];
- if (Has_colscale) {
- __syncthreads();
- idx = warp_m * Ktraits::VEC_COLS + tid_r;
- #pragma unroll
- for( int it = 0; it < LDGS; it++ ) {
- dcolscale_sum[it].store_to(smem_wgrad, idx);
- idx += THREADS_PER_ROW;
- }
- __syncthreads();
- memset(cta_dcolscale_sum, 0, sizeof(compute_t) * NUM_RES);
- for( int it = 0; it < ROWS_PER_CTA; it++ ) {
- for( int jt = 0; jt < NUM_RES; jt++ ) {
- cta_dcolscale_sum[jt] += smem_wgrad[it * COLS + tidx + jt * Ktraits::THREADS_PER_CTA];
- }
- }
- }
- const index_t num_valid_writes
- = (params.cols - 1 - tidx + Ktraits::THREADS_PER_CTA) / Ktraits::THREADS_PER_CTA;
- compute_t *dgamma_part = static_cast<compute_t *>(params.dgamma_part) + bidm * params.cols + tidx;
- compute_t *dbeta_part = static_cast<compute_t *>(params.dbeta_part) + bidm * params.cols + tidx;
- compute_t *dcolscale_part = Has_colscale ? static_cast<compute_t *>(params.dcolscale_part) + bidm * params.cols + tidx : nullptr;
- for( int jt = 0; jt < NUM_RES; jt++ ) {
- if (Is_even_cols || (jt < num_valid_writes)) {
- *dgamma_part = cta_dzy_sum[jt];
- dgamma_part += Ktraits::THREADS_PER_CTA;
- *dbeta_part = cta_dz_sum[jt];
- dbeta_part += Ktraits::THREADS_PER_CTA;
- if (Has_colscale) {
- *dcolscale_part = cta_dcolscale_sum[jt];
- dcolscale_part += Ktraits::THREADS_PER_CTA;
- }
- }
- }
- }
- }
- template<typename Kernel_traits, bool Has_colscale, bool Is_even_cols>
- __global__ __launch_bounds__(Kernel_traits::THREADS_PER_CTA)
- void ln_bwd_finalize_kernel(BwdParams params)
- {
- using compute_t = typename Kernel_traits::compute_t;
- using weight_t = typename Kernel_traits::weight_t;
- using index_t = typename Kernel_traits::index_t;
- using Reducer = typename Kernel_traits::Reducer;
- using reduce_t = typename Reducer::Type;
- Sum<reduce_t> sum;
- enum { NUM_ELT = Kernel_traits::ELTS_PER_LDG };
- enum { THREADS_PER_WARP = Kernel_traits::THREADS_PER_WARP };
- __shared__ char smem_[Kernel_traits::SMEM_BYTES_PER_CTA];
- constexpr uint32_t bidm = 0;
- const uint32_t bidn = blockIdx.x;
- const uint32_t tidx = threadIdx.x;
- const uint32_t warp = tidx / THREADS_PER_WARP;
- const uint32_t lane = tidx % THREADS_PER_WARP;
- Reducer reducer(params, bidm, bidn, 0, 0, lane, smem_);
- const uint32_t c = bidn * THREADS_PER_WARP + lane;
- const uint32_t c_out = bidn * THREADS_PER_WARP / 2 + lane;
- constexpr uint32_t COL_STRIDE = Kernel_traits::CTAS * THREADS_PER_WARP;
- for( uint32_t col = c, col_out = c_out; col < Kernel_traits::COLS; col += COL_STRIDE, col_out += COL_STRIDE / 2 ) {
- // Each thread sums over NUM_ELT columns.
- Vec<compute_t, NUM_ELT> dbeta_local, dgamma_local, dcolscale_local;
- memset(&dgamma_local, 0, sizeof(dgamma_local));
- memset(&dbeta_local, 0, sizeof(dbeta_local));
- if (Has_colscale) { memset(&dcolscale_local, 0, sizeof(dcolscale_local)); }
- if (Is_even_cols || col < params.cols) {
- for( uint32_t row = warp; row < params.ctas_per_col; row += Kernel_traits::ROWS_PER_CTA ) {
- index_t idx = row * params.cols + col;
- Vec<compute_t, NUM_ELT> dbeta_part, dgamma_part, dcolscale_part;
- dbeta_part.load_from(params.dbeta_part, idx);
- dgamma_part.load_from(params.dgamma_part, idx);
- if (Has_colscale) { dcolscale_part.load_from(params.dcolscale_part, idx); }
- #pragma unroll
- for( int it = 0; it < NUM_ELT; it++ ) {
- dgamma_local.data.elt[it] += dgamma_part.data.elt[it];
- dbeta_local.data.elt[it] += dbeta_part.data.elt[it];
- if (Has_colscale) { dcolscale_local.data.elt[it] += dcolscale_part.data.elt[it]; }
- }
- }
- }
- void * smem_gamma = smem_;
- void * smem_beta = &smem_[Kernel_traits::SMEM_BYTES_TRANSPOSE];
- void * smem_colscale = &smem_[2 * Kernel_traits::SMEM_BYTES_TRANSPOSE];
- const int write_row = warp;
- const int write_col = lane ^ write_row;
- const int write_idx = write_row * THREADS_PER_WARP + write_col;
- dgamma_local.store_to(smem_gamma, write_idx);
- dbeta_local.store_to(smem_beta, write_idx);
- if (Has_colscale) { dcolscale_local.store_to(smem_colscale, write_idx); }
- __syncthreads();
- // It would be probably safe to reuse the first row of smem_beta and smem_gamma
- void * smem_gamma_out = &smem_[Kernel_traits::NUM_FACTORS * Kernel_traits::SMEM_BYTES_TRANSPOSE];
- void * smem_beta_out = &smem_[Kernel_traits::NUM_FACTORS * Kernel_traits::SMEM_BYTES_TRANSPOSE + Kernel_traits::SMEM_BYTES_OUTPUT];
- void * smem_colscale_out = &smem_[Kernel_traits::NUM_FACTORS * Kernel_traits::SMEM_BYTES_TRANSPOSE + 2 * Kernel_traits::SMEM_BYTES_OUTPUT];
- // More than one iter iff ROWS_PER_CTA < 32.
- for( int w = warp; w < THREADS_PER_WARP; w += Kernel_traits::ROWS_PER_CTA ) {
- const int read_row = lane;
- const int read_col = w ^ read_row;
- const int read_idx = read_row * THREADS_PER_WARP + read_col;
- memset(&dbeta_local, 0, sizeof(dbeta_local));
- memset(&dgamma_local, 0, sizeof(dgamma_local));
- if (Has_colscale) { memset(&dcolscale_local, 0, sizeof(dcolscale_local)); }
- // Load beta and gamma transposed
- if(read_row < Kernel_traits::ROWS_PER_CTA){
- dbeta_local.load_from(smem_beta, read_idx);
- dgamma_local.load_from(smem_gamma, read_idx);
- if (Has_colscale) { dcolscale_local.load_from(smem_colscale, read_idx); }
- }
- // Call reducer on the loaded value(s) and convert.
- #pragma unroll
- for( int it = 0; it < NUM_ELT; it++ ) {
- compute_t b_i = dbeta_local.data.elt[it];
- compute_t g_i = dgamma_local.data.elt[it];
- b_i = reducer.allreduce(b_i, sum);
- g_i = reducer.allreduce(g_i, sum);
- dgamma_local.data.elt[it] = g_i;
- dbeta_local.data.elt[it] = b_i;
- if (Has_colscale) {
- compute_t cs_i = dcolscale_local.data.elt[it];
- cs_i = reducer.allreduce(cs_i, sum);
- dcolscale_local.data.elt[it] = cs_i;
- }
- }
- // Leader stores the result at the current column.
- if(lane == 0){
- dgamma_local.store_to(smem_gamma_out, w);
- dbeta_local.store_to(smem_beta_out, w);
- if (Has_colscale) { dcolscale_local.store_to(smem_colscale_out, w); }
- }
- }
- // All writes done.
- __syncthreads();
- // Pack and store: 2-wide stores with half the threads.
- if (Is_even_cols || col_out * 2 < params.cols) {
- if( warp == Kernel_traits::ROWS_PER_CTA - 1 && lane < THREADS_PER_WARP / 2 ) {
- using src_t = typename TypeToVec2<compute_t>::Type;
- using dst_t = typename TypeToVec2<weight_t>::Type;
- Vec<src_t, NUM_ELT> dbeta_vec2, dgamma_vec2, dcolscale_vec2;
- Vec<dst_t, NUM_ELT> dbeta_out2, dgamma_out2, dcolscale_out2;
- dgamma_vec2.load_from(smem_gamma_out, lane);
- dbeta_vec2.load_from(smem_beta_out, lane);
- if (Has_colscale) { dcolscale_vec2.load_from(smem_colscale_out, lane); }
- #pragma unroll
- for( int it = 0; it < NUM_ELT; it++ ) {
- dgamma_out2.data.elt[it] = Converter<src_t,dst_t>::convert(dgamma_vec2.data.elt[it]);
- dbeta_out2.data.elt[it] = Converter<src_t,dst_t>::convert(dbeta_vec2.data.elt[it]);
- if (Has_colscale) { dcolscale_out2.data.elt[it] = Converter<src_t,dst_t>::convert(dcolscale_vec2.data.elt[it]); }
- }
- dgamma_out2.store_to(params.dgamma, col_out);
- dbeta_out2.store_to(params.dbeta, col_out);
- if (Has_colscale) { dcolscale_out2.store_to(params.dcolscale, col_out); }
- }
- }
- }
- }
- } // namespace layer_norm
- using namespace layer_norm;
- template<
- typename weight_t,
- typename input_t,
- typename residual_t,
- typename output_t,
- typename compute_t,
- typename index_t,
- int HIDDEN_SIZE,
- int CTAS_PER_ROW,
- int WARPS_M,
- int WARPS_N,
- int BYTES_PER_LDG_MAIN,
- int BYTES_PER_LDG_FINAL
- >
- void launch_(LaunchParams<BwdParams> &launch_params, const bool configure_params){
- using Kernel_traits = Kernel_traits<weight_t,
- input_t,
- residual_t,
- output_t,
- compute_t,
- index_t,
- HIDDEN_SIZE,
- CTAS_PER_ROW,
- WARPS_M,
- WARPS_N,
- BYTES_PER_LDG_MAIN
- >;
- bool is_dropout = launch_params.params.dropout_keep_p < 1.f;
- bool has_colscale = launch_params.params.colscale != nullptr;
- bool has_subset = launch_params.params.x0_subset != nullptr;
- bool is_even_cols = launch_params.params.cols == HIDDEN_SIZE;
- BOOL_SWITCH(is_dropout, IsDropoutConst, [&] {
- BOOL_SWITCH(has_colscale, HasColscaleConst, [&] {
- BOOL_SWITCH(has_subset, HasSubsetConst, [&] {
- BOOL_SWITCH(is_even_cols, IsEvenColsConst, [&] {
- auto kernel = &ln_bwd_kernel<Kernel_traits, IsDropoutConst, HasColscaleConst, HasSubsetConst, IsEvenColsConst>;
- if( configure_params ) {
- int ctas_per_sm;
- CHECK_CUDA(cudaOccupancyMaxActiveBlocksPerMultiprocessor(
- &ctas_per_sm, kernel, Kernel_traits::THREADS_PER_CTA, Kernel_traits::SMEM_BYTES));
- launch_params.params.ctas_per_col = launch_params.props->multiProcessorCount * ctas_per_sm / Kernel_traits::CTAS_PER_ROW;
- launch_params.barrier_size = 0;
- launch_params.workspace_bytes = 0;
- if(Kernel_traits::CTAS_PER_ROW > 1) {
- launch_params.barrier_size = 2 * launch_params.params.ctas_per_col;
- launch_params.workspace_bytes = launch_params.params.ctas_per_col
- * Kernel_traits::WARPS_M
- * Kernel_traits::CTAS_PER_ROW
- * sizeof(typename Kernel_traits::reduce_t)
- * 2;
- }
- return;
- }
- if( Kernel_traits::SMEM_BYTES >= 48 * 1024 ) {
- CHECK_CUDA(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, Kernel_traits::SMEM_BYTES));
- }
- auto stream = launch_params.stream;
- auto ctas_per_col = launch_params.params.ctas_per_col;
- if( Kernel_traits::CTAS_PER_ROW == 1 ) {
- kernel<<<ctas_per_col, Kernel_traits::THREADS_PER_CTA, Kernel_traits::SMEM_BYTES, stream>>>(launch_params.params);
- } else {
- dim3 grid(Kernel_traits::CTAS_PER_ROW * ctas_per_col);
- dim3 block(Kernel_traits::THREADS_PER_CTA);
- void *params_ = (void *)&launch_params.params;
- cudaLaunchCooperativeKernel((void *)kernel, grid, block, (void **)¶ms_, Kernel_traits::SMEM_BYTES, stream);
- }
- using Kernel_traits_f = layer_norm::Kernel_traits_finalize<HIDDEN_SIZE,
- weight_t,
- input_t,
- residual_t,
- output_t,
- compute_t,
- index_t,
- HasColscaleConst,
- 32 * 32, // THREADS_PER_CTA
- BYTES_PER_LDG_FINAL>;
- auto kernel_f = &layer_norm::ln_bwd_finalize_kernel<Kernel_traits_f, HasColscaleConst, IsEvenColsConst>;
- kernel_f<<<Kernel_traits_f::CTAS, Kernel_traits_f::THREADS_PER_CTA, 0, stream>>>(launch_params.params);
- });
- });
- });
- });
- }
|