123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567 |
- /******************************************************************************
- * Copyright (c) 2024, Tri Dao.
- ******************************************************************************/
- #include "flash_common.hpp"
- #include "fmha_fwd.hpp"
- #include "rotary.hpp"
- fmha_fwd_appendkv_traits get_ck_fmha_fwd_appendkv_traits(std::string dtype,
- int head_size,
- int rotary_dim,
- bool is_rotary_interleaved)
- {
- rope_enum rope_type = (0 < rotary_dim ? (is_rotary_interleaved ? rope_enum::interleaved
- : rope_enum::half_rotated)
- : rope_enum::none);
- return fmha_fwd_appendkv_traits{head_size,
- head_size,
- dtype,
- true, // is_v_rowmajor
- rope_type};
- }
- fmha_fwd_splitkv_traits get_ck_fmha_fwd_splitkv_traits(const mask_info &mask,
- std::string dtype,
- int head_size,
- bool has_lse,
- bool enable_alibi)
- {
- return fmha_fwd_splitkv_traits{head_size,
- head_size,
- dtype,
- false, // is_group_mode
- true, // is_v_rowmajor
- mask.type,
- enable_alibi ? bias_enum::alibi : bias_enum::no_bias,
- has_lse,
- false}; // do_fp8_static_quant
- }
- fmha_fwd_appendkv_args get_ck_fmha_fwd_appendkv_args(const int b,
- const int seqlen_q,
- const int seqlen_knew,
- const int h,
- const int h_k,
- const int d,
- const int rotary_dim,
- const bool has_mask,
- const int page_block_size,
- // device pointers
- const at::Tensor q,
- const at::Tensor kcache,
- const at::Tensor vcache,
- const at::Tensor knew,
- const at::Tensor vnew,
- std::optional<const at::Tensor> &seqlens_k_,
- std::optional<const at::Tensor> &rotary_cos_,
- std::optional<const at::Tensor> &rotary_sin_,
- std::optional<const at::Tensor> &cache_batch_idx_,
- std::optional<at::Tensor> &block_table_)
- {
- // q: (batch_size, seqlen_q, nheads, d)
- // kcache: (batch_size_c, seqlen_k, nheads_k, d) or (num_blocks, page_block_size, nheads_k, d)
- // vcache: (batch_size_c, seqlen_k, nheads_k, d) or (num_blocks, page_block_size, nheads_k, d)
- // knew: (batch_size, seqlen_knew, nheads_k, d)
- // vnew: (batch_size, seqlen_knew, nheads_k, d)
- // seqlens_k: (batch_size)
- // rotary_cos: (seqlen_ro, rotary_dim / 2)
- // rotary_sin: (seqlen_ro, rotary_dim / 2)
- // block_table: (batch_size, max_num_blocks_per_seq)
- fmha_fwd_appendkv_args args;
- args.q_ptr = q.data_ptr();
- args.k_ptr = kcache.data_ptr();
- args.knew_ptr = knew.data_ptr();
- args.v_ptr = vcache.data_ptr();
- args.vnew_ptr = vnew.data_ptr();
- args.seqlen_k_ptr = seqlens_k_.has_value() ? seqlens_k_.value().data_ptr() : nullptr;
- args.seqlen_q = seqlen_q;
- args.seqlen_knew = seqlen_knew;
- args.batch = b;
- args.hdim_q = d;
- args.hdim_v = d;
- args.nhead_q = h;
- args.nhead_k = h_k;
- args.rotary_cos_ptr = rotary_cos_.has_value() ? rotary_cos_.value().data_ptr() : nullptr;
- args.rotary_sin_ptr = rotary_sin_.has_value() ? rotary_sin_.value().data_ptr() : nullptr;
- args.rotary_dim = rotary_dim;
- args.has_mask = has_mask;
- if (block_table_.has_value())
- {
- auto block_table = block_table_.value();
- args.block_table_ptr = block_table.data_ptr();
- args.batch_stride_block_table = block_table.stride(0);
- args.page_block_size = page_block_size;
- }
- else
- {
- args.block_table_ptr = nullptr;
- args.batch_stride_block_table = 0;
- args.page_block_size = 0;
- }
- args.cache_batch_idx = cache_batch_idx_.has_value() ?
- reinterpret_cast<int *>(cache_batch_idx_.value().data_ptr()) : nullptr;
- args.batch_stride_q = q.stride(0);
- args.stride_q = q.stride(1);
- args.nhead_stride_q = q.stride(2);
- args.batch_stride_k = kcache.stride(0);
- args.stride_k = kcache.stride(1);
- args.nhead_stride_k = kcache.stride(2);
- args.batch_stride_knew = knew.stride(0);
- args.stride_knew = knew.stride(1);
- args.nhead_stride_knew = knew.stride(2);
- args.batch_stride_v = vcache.stride(0);
- args.stride_v = vcache.stride(1);
- args.nhead_stride_v = vcache.stride(2);
- args.batch_stride_vnew = vnew.stride(0);
- args.stride_vnew = vnew.stride(1);
- args.nhead_stride_vnew = vnew.stride(2);
- return args;
- }
- fmha_fwd_splitkv_args get_ck_fmha_fwd_splitkv_args(bool has_lse,
- const mask_info &mask,
- const int b,
- const int seqlen_q,
- const int seqlen_k,
- const int h,
- const int h_k,
- const int d,
- const int page_block_size,
- const int num_splits,
- float softmax_scale,
- // device pointers
- const at::Tensor q,
- const at::Tensor k,
- const at::Tensor v,
- const at::Tensor seqlens_k,
- std::optional<const at::Tensor> &cache_batch_idx_,
- std::optional<at::Tensor> &block_table_,
- std::optional<at::Tensor> &alibi_slopes_,
- at::Tensor out,
- at::Tensor lse,
- at::Tensor lse_acc,
- at::Tensor out_acc)
- {
- // q: (batch_size, seqlen_q, nheads, d)
- // k: (batch_size, seqlen_k, nheads_k, d)
- // v: (batch_size, seqlen_k, nheads_k, d)
- // o: (batch_size, seqlen_q, nheads, d)
- // alibi_slopes:(batch_size, nheads) or (nhead)
- // lse: (batch_size, nheads, seqlen_q)
- // lse_acc: (split, batch_size, nheads, seqlen_q)
- // o_acc: (split, batch_size, nheads, seqlen_q, d)
- fmha_fwd_splitkv_args args;
- args.q_ptr = q.data_ptr();
- args.k_ptr = k.data_ptr();
- args.v_ptr = v.data_ptr();
- args.bias_ptr = nullptr;
- args.lse_acc_ptr = lse_acc.data_ptr();
- args.o_acc_ptr = out_acc.data_ptr();
- args.lse_ptr = nullptr;
- args.o_ptr = out.data_ptr();
- if (block_table_.has_value())
- {
- auto block_table = block_table_.value();
- args.block_table_ptr = block_table.data_ptr();
- args.batch_stride_block_table = block_table.stride(0);
- args.page_block_size = page_block_size;
- }
- else
- {
- args.block_table_ptr = nullptr;
- args.batch_stride_block_table = 0;
- args.page_block_size = 0;
- }
- args.cache_batch_idx = cache_batch_idx_.has_value() ? cache_batch_idx_.value().data_ptr() : nullptr;
- args.seqstart_q_ptr = nullptr;
- args.seqstart_k_ptr = nullptr;
- args.seqlen_k_ptr = seqlens_k.data_ptr();
- args.seqlen_q = seqlen_q;
- args.seqlen_k = seqlen_k;
- args.batch = b;
- args.max_seqlen_q = seqlen_q;
- args.hdim_q = d;
- args.hdim_v = d;
- args.nhead_q = h;
- args.nhead_k = h_k;
- args.num_splits = num_splits;
- args.scale_s = softmax_scale;
- args.scale_p = 1;
- args.scale_o = 1;
- args.batch_stride_q = q.stride(0);
- args.stride_q = q.stride(1);
- args.nhead_stride_q = q.stride(2);
- args.batch_stride_k = k.stride(0);
- args.stride_k = k.stride(1);
- args.nhead_stride_k = k.stride(2);
- args.batch_stride_v = v.stride(0);
- args.stride_v = v.stride(1);
- args.nhead_stride_v = v.stride(2);
- args.batch_stride_o = out.stride(0);
- args.stride_o = out.stride(1);
- args.nhead_stride_o = out.stride(2);
- args.batch_stride_bias = 0;
- args.stride_bias = 0;
- args.nhead_stride_bias = 0;
- args.batch_stride_lse = 0;
- args.nhead_stride_lse = 0;
- args.split_stride_lse_acc = lse_acc.stride(0);
- args.batch_stride_lse_acc = lse_acc.stride(1);
- args.nhead_stride_lse_acc = lse_acc.stride(2);
- args.split_stride_o_acc = out_acc.stride(0);
- args.batch_stride_o_acc = out_acc.stride(1);
- args.nhead_stride_o_acc = out_acc.stride(2);
- args.stride_o_acc = out_acc.stride(3);
- if (has_lse) {
- args.lse_ptr = lse.data_ptr();
- args.batch_stride_lse = lse.stride(0);
- args.nhead_stride_lse = lse.stride(1);
- }
- if (alibi_slopes_.has_value()) {
- auto alibi_slopes = alibi_slopes_.value();
- CHECK_DEVICE(alibi_slopes);
- TORCH_CHECK(alibi_slopes.stride(-1) == 1, "ALiBi slopes tensor must have contiguous last dimension");
- TORCH_CHECK(alibi_slopes.sizes() == torch::IntArrayRef({h}) || alibi_slopes.sizes() == torch::IntArrayRef({b, h}));
- args.bias_ptr = alibi_slopes.data_ptr();
- args.stride_bias = alibi_slopes.dim() == 2 ? alibi_slopes.stride(0) : 0;
- }
- args.window_size_left = mask.left;
- args.window_size_right = mask.right;
- args.mask_type = static_cast<ck_tile::index_t>(mask.type);
- return args;
- }
- std::vector<at::Tensor>
- mha_fwd_kvcache(at::Tensor &q, // batch_size x seqlen_q x num_heads x head_size
- const at::Tensor &kcache, // batch_size_c x seqlen_k x num_heads_k x head_size or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
- const at::Tensor &vcache, // batch_size_c x seqlen_k x num_heads_k x head_size or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
- std::optional<const at::Tensor> &k_, // batch_size x seqlen_knew x num_heads_k x head_size
- std::optional<const at::Tensor> &v_, // batch_size x seqlen_knew x num_heads_k x head_size
- std::optional<const at::Tensor> &seqlens_k_, // batch_size
- std::optional<const at::Tensor> &rotary_cos_, // seqlen_ro x (rotary_dim / 2)
- std::optional<const at::Tensor> &rotary_sin_, // seqlen_ro x (rotary_dim / 2)
- std::optional<const at::Tensor> &cache_batch_idx_, // indices to index into the KV cache
- std::optional<const at::Tensor> & /*leftpad_k_*/, // batch_size
- std::optional<at::Tensor> &block_table_, // batch_size x max_num_blocks_per_seq
- std::optional<at::Tensor> &alibi_slopes_, // num_heads or batch_size x num_heads
- std::optional<at::Tensor> &out_, // batch_size x seqlen_q x num_heads x head_size
- const float softmax_scale,
- bool is_causal,
- int window_size_left,
- int window_size_right,
- const float /*softcap*/,
- bool is_rotary_interleaved, // if true, rotary combines indices 0 & 1, else indices 0 & rotary_dim / 2
- int num_splits)
- {
- auto q_dtype = q.dtype();
- TORCH_CHECK(q_dtype == torch::kFloat16 || q_dtype == torch::kBFloat16,
- "FlashAttention only support fp16 and bf16 data type");
- TORCH_CHECK(kcache.dtype() == q_dtype, "query and key must have the same dtype");
- TORCH_CHECK(vcache.dtype() == q_dtype, "query and value must have the same dtype");
- std::string q_dtype_str = q_dtype == torch::kFloat16 ? "fp16" : "bf16";
- CHECK_DEVICE(q); CHECK_DEVICE(kcache); CHECK_DEVICE(vcache);
- TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
- TORCH_CHECK(kcache.stride(-1) == 1, "Input tensor must have contiguous last dimension");
- TORCH_CHECK(vcache.stride(-1) == 1, "Input tensor must have contiguous last dimension");
- at::Tensor block_table;
- const bool paged_KV = block_table_.has_value();
- if (paged_KV) {
- TORCH_CHECK(!cache_batch_idx_.has_value(), "Paged KVcache does not support cache_batch_idx");
- block_table = block_table_.value();
- CHECK_DEVICE(block_table);
- TORCH_CHECK(block_table.dtype() == torch::kInt32, "block_table must have dtype torch.int32");
- TORCH_CHECK(block_table.stride(-1) == 1, "block_table must have contiguous last dimension");
- }
- const auto sizes = q.sizes();
- const int batch_size = sizes[0];
- int seqlen_q = sizes[1];
- int num_heads = sizes[2];
- const int head_size_og = sizes[3];
- const int max_num_blocks_per_seq = !paged_KV ? 0 : block_table.size(1);
- const int num_blocks = !paged_KV ? 0 : kcache.size(0);
- const int page_block_size = !paged_KV ? 1 : kcache.size(1);
- TORCH_CHECK(!paged_KV || page_block_size % 128 == 0, "Paged KV cache block size must be divisible by 128");
- const int seqlen_k = !paged_KV ? kcache.size(1) : max_num_blocks_per_seq * page_block_size;
- const int num_heads_k = kcache.size(2);
- const int batch_size_c = !paged_KV ? kcache.size(0) : batch_size;
- TORCH_CHECK(batch_size > 0, "batch size must be positive");
- TORCH_CHECK(head_size_og <= 256, "FlashAttention forward only supports head dimension at most 256");
- TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
- // causal=true is the same as causal=false in this case
- if (seqlen_q == 1 && !alibi_slopes_.has_value()) { is_causal = false; }
- if (is_causal) { window_size_right = 0; }
- mask_info mask;
- if (is_causal) {
- // Causal is the special case where window_size_right == 0 and window_size_left < 0.
- window_size_right = 0;
- std::string mask_identify = "b:" + std::to_string(window_size_left) + "," + "0";
- mask = mask_info::decode(mask_identify, seqlen_q, seqlen_k); // casual
- }
- else if (window_size_left == -1 && window_size_right == -1) {
- mask = mask_info::decode("0", seqlen_q, seqlen_k); // no mask
- }
- else {
- // Local is the more general case where window_size_right >= 0 or window_size_left >= 0.
- std::string mask_identify = "b:" + std::to_string(window_size_left) + "," + std::to_string(window_size_right);
- mask = mask_info::decode(mask_identify, seqlen_q, seqlen_k); // local
- }
- // Faster to transpose q from (b, 1, (nheads_kv ngroups), d) to (b, ngroups, nheads_kv, d) in this case
- // H/t Daniel Haziza
- const int seqlenq_ngroups_swapped = seqlen_q == 1 && num_heads > num_heads_k && window_size_left < 0 && window_size_right < 0 && head_size_og % 8 == 0 && !alibi_slopes_.has_value();
- if (seqlenq_ngroups_swapped) {
- const int ngroups = num_heads / num_heads_k;
- q = q.reshape({batch_size, num_heads_k, ngroups, head_size_og}).transpose(1, 2);
- seqlen_q = ngroups;
- num_heads = num_heads_k;
- }
- if (window_size_left >= seqlen_k) { window_size_left = -1; }
- if (window_size_right >= seqlen_k) { window_size_right = -1; }
- CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size_og);
- if (!paged_KV) {
- CHECK_SHAPE(kcache, batch_size_c, seqlen_k, num_heads_k, head_size_og);
- CHECK_SHAPE(vcache, batch_size_c, seqlen_k, num_heads_k, head_size_og);
- } else {
- CHECK_SHAPE(kcache, num_blocks, page_block_size, num_heads_k, head_size_og);
- CHECK_SHAPE(vcache, num_blocks, page_block_size, num_heads_k, head_size_og);
- CHECK_SHAPE(block_table, batch_size, max_num_blocks_per_seq);
- }
- at::Tensor q_padded, kcache_padded, vcache_padded;
- if (head_size_og % 8 != 0) {
- q_padded = torch::nn::functional::pad(q, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
- kcache_padded = torch::nn::functional::pad(kcache, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
- vcache_padded = torch::nn::functional::pad(vcache, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
- } else {
- q_padded = q;
- kcache_padded = kcache;
- vcache_padded = vcache;
- }
- at::Tensor out;
- if (out_.has_value()) {
- out = out_.value();
- TORCH_CHECK(out.dtype() == q_dtype, "Output must have the same dtype as inputs");
- CHECK_DEVICE(out);
- TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension");
- CHECK_SHAPE(out, batch_size, seqlen_q, num_heads, head_size_og);
- if (head_size_og % 8 != 0) { out = torch::empty_like(q_padded); }
- } else {
- out = torch::empty_like(q_padded);
- }
- auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
- const int head_size_8x = round_multiple(head_size_og, 8);
- // Otherwise the kernel will be launched from cuda:0 device
- at::cuda::CUDAGuard device_guard{q.device()};
- auto opts = q.options();
- // TODO - check gradient, only training require lse
- bool has_lse = true;
- auto softmax_lse = torch::empty({batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat));
- int seqlen_knew = 0;
- at::Tensor k, v, k_padded, v_padded;
- if (k_.has_value()) {
- TORCH_CHECK(v_.has_value(), "If key is supplied, value must also be passed in");
- TORCH_CHECK(seqlens_k_.has_value(), "If key is supplied, seqlens_k must also be passed in");
- TORCH_CHECK(seqlen_q <= seqlen_k, "If key is supplied, it must have seqlen <= the seqlen of the KV cache");
- k = k_.value();
- v = v_.value();
- TORCH_CHECK(k.dtype() == q_dtype, "Key must have the same dtype as query");
- TORCH_CHECK(v.dtype() == q_dtype, "Value must have the same dtype as query");
- CHECK_DEVICE(k); CHECK_DEVICE(v);
- TORCH_CHECK(k.stride(-1) == 1, "Key tensor must have contiguous last dimension");
- TORCH_CHECK(v.stride(-1) == 1, "Value tensor must have contiguous last dimension");
- seqlen_knew = k.size(1);
- CHECK_SHAPE(k, batch_size, seqlen_knew, num_heads_k, head_size_og);
- CHECK_SHAPE(v, batch_size, seqlen_knew, num_heads_k, head_size_og);
- if (head_size_og % 8 != 0) {
- k_padded = torch::nn::functional::pad(k, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
- v_padded = torch::nn::functional::pad(v, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
- } else {
- k_padded = k;
- v_padded = v;
- }
- }
- if (seqlens_k_.has_value()) {
- auto seqlens_k = seqlens_k_.value();
- TORCH_CHECK(seqlens_k.dtype() == torch::kInt32, "seqlens_k must have dtype int32");
- CHECK_DEVICE(seqlens_k);
- CHECK_CONTIGUOUS(seqlens_k);
- CHECK_SHAPE(seqlens_k, batch_size);
- }
- int rotary_dim = 0;
- if (rotary_cos_.has_value()) {
- TORCH_CHECK(k_.has_value(), "If rotary cos/sin are provided, new key / value to be appended to KV cache must also be provided");
- auto rotary_cos = rotary_cos_.value();
- CHECK_DEVICE(rotary_cos);
- rotary_dim = rotary_cos.size(1) * 2;
- TORCH_CHECK(rotary_dim <= head_size_og, "rotary_dim must be <= headdim");
- TORCH_CHECK(rotary_dim % 16 == 0, "Only rotary dimensions divisible by 16 are currently supported");
- const int seqlen_ro = rotary_cos.size(0);
- TORCH_CHECK(seqlen_ro >= seqlen_k, "cos/sin seqlen must be at least the seqlen of KV cache");
- CHECK_SHAPE(rotary_cos, seqlen_ro, rotary_dim / 2);
- CHECK_CONTIGUOUS(rotary_cos);
- TORCH_CHECK(rotary_cos.scalar_type() == q_dtype, "rotary_cos must have the same dtype as query");
- TORCH_CHECK(rotary_sin_.has_value(), "If rotary cos is provided, rotary sin must also be provided");
- auto rotary_sin = rotary_sin_.value();
- CHECK_DEVICE(rotary_sin);
- CHECK_SHAPE(rotary_sin, seqlen_ro, rotary_dim / 2);
- CHECK_CONTIGUOUS(rotary_sin);
- TORCH_CHECK(rotary_sin.scalar_type() == q_dtype, "rotary_cos must have the same dtype as query");
- }
- if (cache_batch_idx_.has_value()) {
- auto cache_batch_idx = cache_batch_idx_.value();
- CHECK_DEVICE(cache_batch_idx);
- CHECK_CONTIGUOUS(cache_batch_idx);
- TORCH_CHECK(cache_batch_idx.scalar_type() == torch::kInt32, "cache_batch_idx must have dtype int32");
- }
- num_splits = flash::override_num_splits_if_necessary(batch_size, num_heads, seqlen_q, head_size_8x, 0, num_splits);
- TORCH_CHECK(num_splits > 0, "num_splits should greater than 0");
- TORCH_CHECK(num_splits <= 128, "num_splits greater than 128 is not supported");
- // Keep references to these tensors to extend their lifetime
- auto softmax_lse_accum = torch::empty({num_splits, batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat));
- auto out_accum = torch::empty({num_splits, batch_size, num_heads, seqlen_q, head_size_8x}, opts.dtype(at::kFloat));
- auto stream = at::cuda::getCurrentCUDAStream().stream();
- ck_tile::stream_config stream_config{stream};
- if (seqlen_knew > 0 || rotary_dim > 0) {
- auto appendkv_traits =
- get_ck_fmha_fwd_appendkv_traits(q_dtype_str, head_size_8x, rotary_dim, is_rotary_interleaved);
- auto appendkv_args =
- get_ck_fmha_fwd_appendkv_args(
- batch_size,
- seqlen_q,
- seqlen_knew,
- num_heads,
- num_heads_k,
- head_size_8x,
- rotary_dim,
- mask.type != mask_enum::no_mask,
- page_block_size,
- q_padded,
- kcache_padded,
- vcache_padded,
- k_padded,
- v_padded,
- seqlens_k_,
- rotary_cos_,
- rotary_sin_,
- cache_batch_idx_,
- block_table_);
- fmha_fwd_appendkv(appendkv_traits, appendkv_args, stream_config);
- }
- // seqlens_k_ is the seqlen of kvcache. We need to add seqlen_knew for before attention
- auto append_seqlens_k = torch::empty({batch_size}, opts.dtype(torch::kInt32));
- if (seqlens_k_.has_value())
- append_seqlens_k = seqlens_k_.value() + seqlen_knew;
- else
- append_seqlens_k.fill_(seqlen_knew);
- // we use splitkv even num_splits == 1, because fmha_fwd() does not support seqlen_k_ in batch mode
- auto splitkv_traits =
- get_ck_fmha_fwd_splitkv_traits(mask, q_dtype_str, head_size_8x, has_lse, alibi_slopes_.has_value());
- auto splitkv_args =
- get_ck_fmha_fwd_splitkv_args(
- has_lse,
- mask,
- batch_size,
- seqlen_q,
- seqlen_k,
- num_heads,
- num_heads_k,
- head_size_8x,
- page_block_size,
- num_splits,
- softmax_scale,
- q_padded,
- kcache_padded,
- vcache_padded,
- append_seqlens_k,
- cache_batch_idx_,
- block_table_,
- alibi_slopes_,
- out,
- softmax_lse,
- softmax_lse_accum,
- out_accum);
- fmha_fwd_splitkv(splitkv_traits, splitkv_args, stream_config);
- if (head_size_og % 8 != 0) {
- out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
- if (out_.has_value()) { out_.value().copy_(out); }
- if (k_.has_value()) {
- // It's expensive to copy the KV cache here for the case where head size not divisible by 8,
- // but we don't expect to get this case in practice. This is just so that the code works for that case.
- kcache.copy_(kcache_padded.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)}));
- vcache.copy_(vcache_padded.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)}));
- }
- }
- if (seqlenq_ngroups_swapped) {
- out = out.transpose(1, 2).reshape({batch_size, 1, num_heads_k * seqlen_q, head_size_og});
- softmax_lse = softmax_lse.reshape({batch_size, num_heads_k * seqlen_q, 1});
- }
- return {out, softmax_lse};
- }
|