123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754 |
- import math
- import pytest
- import torch
- import torch.nn.functional as F
- from einops import rearrange, repeat
- from flash_attn import (
- flash_attn_func,
- flash_attn_kvpacked_func,
- flash_attn_qkvpacked_func,
- flash_attn_varlen_func,
- flash_attn_varlen_kvpacked_func,
- flash_attn_varlen_qkvpacked_func,
- )
- from test_flash_attn import (
- attn_bias_from_alibi_slopes,
- convert_flash_attn_S_to_softmax,
- generate_qkv,
- generate_random_padding_mask,
- attention_ref,
- attention_kvpacked_ref,
- attention_qkvpacked_ref,
- )
- def is_bwd_hdim_supported(d):
- return d <= 128 and d % 2 == 0
- def ck_randval_to_dropout_mask(randval, p):
- # If p = 0.3, randval in 255 * (0.7, 1.0] will be dropout
- # randval in 255 * [0, 0.7] will be kept
- # If return dropout_mask >=0, value will be kept
- return torch.floor(255.0 * (1 - p) - randval)
- def pad_rearrange_dropout_mask_hts_to_bhss(S_dmask, cu_seqlens_q, seqlen_q_rounded, seqlen_k_rounded):
- """ pad + rearrange [nheads, total_q, max_seqlen_k] into [b, nheads, seqlen_q_rounded, seqlen_k_rounded]
- Arguments:
- S_dmask: (nheads, total_q, max_seqlen_k)
- cu_seqlens_q: (b + 1)
- Output:
- S_dmask: (b, nheads, seqlen_q_rounded, seqlen_k_rounded)
- """
- batch_size = cu_seqlens_q.numel() - 1
- seqlens_q = torch.roll(cu_seqlens_q, shifts = -1) - cu_seqlens_q
- seqlens_q = seqlens_q[0:batch_size].tolist()
- S_dmask = torch.split(S_dmask, seqlens_q, dim=1)
- # [(nheads, seqlen_q0, max_seqlen_k), (nheads, seqlen_q1, max_seqlen_k), ..., (nheads, seqlen_qb, max_seqlen_k)]
- masks = ()
- for mask in S_dmask:
- # (nheads, seqlen_qi, max_seqlen_k) -> (nheads, seqlen_q_rounded, seqlen_k_rounded)
- mask = F.pad(mask, (0, seqlen_k_rounded - mask.shape[2], 0, seqlen_q_rounded - mask.shape[1], 0, 0)).unsqueeze(1)
- masks = masks + (mask, )
- S_dmask = torch.cat(masks, dim=1)
- S_dmask = S_dmask.transpose(0, 1)
- return S_dmask
- @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
- @pytest.mark.parametrize("deterministic", [False])
- @pytest.mark.parametrize("alibi", [False, True])
- @pytest.mark.parametrize("local", [False, True])
- @pytest.mark.parametrize("causal", [False, True])
- @pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
- @pytest.mark.parametrize("seqlen", [97, 128, 200, 384, 768, 1024, 1025, 2048])
- @pytest.mark.parametrize("dropout_p", [0.0, 0.17])
- def test_flash_attn_qkvpacked(seqlen, d, dropout_p, causal, local, alibi, deterministic, dtype):
- if d > 256:
- pytest.skip()
- device = "cuda"
- # set seed
- torch.random.manual_seed(0)
- batch_size = 4
- nheads = 9
- window_size = (-1, -1) if not local else torch.randint(0, seqlen, (2,))
- qkv = torch.randn(
- batch_size, seqlen, 3, nheads, d, device=device, dtype=dtype, requires_grad=True
- )
- if alibi:
- alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
- attn_bias = attn_bias_from_alibi_slopes(alibi_slopes, seqlen, seqlen, causal=causal)
- else:
- alibi_slopes, attn_bias = None, None
- out, lse, S_dmask = flash_attn_qkvpacked_func(
- qkv,
- dropout_p,
- causal=causal,
- window_size=window_size,
- alibi_slopes=alibi_slopes,
- deterministic=deterministic,
- return_attn_probs=True,
- )
- if dropout_p > 0.0:
- # TODO - move to c++ mha_varlen_fwd()
- S_dmask = ck_randval_to_dropout_mask(S_dmask, dropout_p)
- S_dmask_converted = convert_flash_attn_S_to_softmax(
- S_dmask,
- seqlen,
- seqlen,
- None,
- None,
- d,
- dropout_p > 0.0,
- causal=causal,
- window_size=window_size,
- )
- dropout_mask = S_dmask_converted >= 0
- # CK does not return P. Hence, we don't test the attn here.
- else:
- dropout_mask = None
- out_ref, attn_ref = attention_qkvpacked_ref(
- qkv, None, attn_bias, dropout_p, dropout_mask, causal=causal, window_size=window_size
- )
- out_pt, attn_pt = attention_qkvpacked_ref(
- qkv,
- None,
- attn_bias,
- dropout_p,
- dropout_mask,
- causal=causal,
- window_size=window_size,
- upcast=False,
- reorder_ops=True,
- )
- print(f"Output max diff: {(out - out_ref).abs().max().item()}")
- print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
- print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
- print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
- # Check that FlashAttention's numerical error is at most twice the numerical error
- # of a Pytorch implementation.
- assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
- g = torch.randn_like(out)
- if is_bwd_hdim_supported(d):
- (dqkv,) = torch.autograd.grad(out, qkv, g)
- (dqkv_ref,) = torch.autograd.grad(out_ref, qkv, g)
- (dqkv_pt,) = torch.autograd.grad(out_pt, qkv, g)
- print(f"dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
- print(f"dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
- print(f"dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
- print(f"dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}")
- print(f"dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
- print(f"dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
- print(f"dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
- print(f"dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}")
- # TODO - use 10 times to check, wait for ck to change dq type to f32
- assert (dqkv - dqkv_ref).abs().max().item() <= 10 * (dqkv_pt - dqkv_ref).abs().max().item()
- @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
- @pytest.mark.parametrize("deterministic", [False])
- @pytest.mark.parametrize("alibi", [False, True])
- @pytest.mark.parametrize("local", [False, True])
- @pytest.mark.parametrize("causal", [False, True])
- @pytest.mark.parametrize("d", [32, 59, 64, 80, 96, 128, 160, 192, 224, 256])
- @pytest.mark.parametrize("seqlen", [97, 128, 200, 257, 384, 512, 768, 1025, 2048])
- @pytest.mark.parametrize("dropout_p", [0, 0.17])
- def test_flash_attn_varlen_qkvpacked(seqlen, d, dropout_p, causal, local, alibi, deterministic, dtype):
- if d > 256:
- pytest.skip()
- device = "cuda"
- # set seed
- torch.random.manual_seed(0)
- batch_size = 5
- nheads = 6
- window_size = (-1, -1) if not local else torch.randint(0, seqlen, (2,))
- qkv = torch.randn(
- batch_size, seqlen, 3, nheads, d, device=device, dtype=dtype, requires_grad=True
- )
- key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode="random")
- # key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='full')
- if alibi:
- alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
- attn_bias = attn_bias_from_alibi_slopes(
- alibi_slopes, seqlen, seqlen, key_padding_mask, key_padding_mask, causal=causal
- )
- else:
- alibi_slopes, attn_bias = None, None
- qkv_unpad, cu_seqlens, max_seqlen, qkv, output_pad_fn, dqkv_pad_fn = generate_qkv(
- *qkv.unbind(dim=2), key_padding_mask, key_padding_mask, qkvpacked=True
- )
- out_unpad, sm_lse, S_dmask = flash_attn_varlen_qkvpacked_func(
- qkv_unpad,
- cu_seqlens,
- max_seqlen,
- dropout_p,
- causal=causal,
- window_size=window_size,
- alibi_slopes=alibi_slopes,
- deterministic=deterministic,
- return_attn_probs=True,
- )
- out = output_pad_fn(out_unpad)
- if dropout_p > 0.0:
- # TODO - move to c++ mha_varlen_fwd()
- S_dmask = ck_randval_to_dropout_mask(S_dmask, dropout_p)
- S_dmask = pad_rearrange_dropout_mask_hts_to_bhss(S_dmask, cu_seqlens, seqlen, seqlen)
- S_dmask_converted = convert_flash_attn_S_to_softmax(
- S_dmask,
- seqlen,
- seqlen,
- key_padding_mask,
- key_padding_mask,
- d,
- dropout_p > 0.0,
- causal=causal,
- window_size=window_size,
- )
- dropout_mask = S_dmask_converted >= 0
- # CK does not return P. Hence, we don't test the attn here.
- else:
- dropout_mask = None
- out_ref, attn_ref = attention_qkvpacked_ref(
- qkv,
- key_padding_mask,
- attn_bias,
- dropout_p,
- dropout_mask,
- causal=causal,
- window_size=window_size,
- )
- out_pt, attn_pt = attention_qkvpacked_ref(
- qkv,
- key_padding_mask,
- attn_bias,
- dropout_p,
- dropout_mask,
- causal=causal,
- window_size=window_size,
- upcast=False,
- reorder_ops=True,
- )
- print(f"Output max diff: {(out - out_ref).abs().max().item()}")
- print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
- print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
- print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
- # Check that FlashAttention's numerical error is at most twice the numerical error
- # of a Pytorch implementation.
- assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
- g = torch.randn_like(out)
- if is_bwd_hdim_supported(d):
- (dqkv_unpad,) = torch.autograd.grad(out, qkv_unpad, g)
- dqkv = dqkv_pad_fn(dqkv_unpad)
- (dqkv_ref,) = torch.autograd.grad(out_ref, qkv, g)
- (dqkv_pt,) = torch.autograd.grad(out_pt, qkv, g)
- print(f"dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
- print(f"dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
- print(f"dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
- print(f"dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}")
- print(f"dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
- print(f"dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
- print(f"dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
- print(f"dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}")
- # TODO - use 10 times to check, wait for ck to change dq type to f32
- assert (dqkv - dqkv_ref).abs().max().item() <= 10 * (dqkv_pt - dqkv_ref).abs().max().item()
- @pytest.mark.parametrize("kvpacked", [True, False])
- @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
- @pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
- @pytest.mark.parametrize("deterministic", [False])
- @pytest.mark.parametrize("alibi", [False, True])
- @pytest.mark.parametrize("local", [False, True])
- @pytest.mark.parametrize("causal", [False, True])
- @pytest.mark.parametrize("d", [32, 40, 59, 64, 96, 111, 128, 160, 192, 224, 256])
- @pytest.mark.parametrize(
- "seqlen_q,seqlen_k",
- [
- (113, 203),
- (128, 217),
- (113, 211),
- (108, 256),
- (256, 512),
- (512, 256),
- (1024, 1024),
- (1023, 1024),
- (1024, 1023),
- (2048, 2048),
- ],
- )
- @pytest.mark.parametrize("dropout_p", [0.0, 0.17])
- def test_flash_attn_output(
- seqlen_q, seqlen_k, d, dropout_p, causal, local, alibi, deterministic, mha_type, dtype, kvpacked
- ):
- device = "cuda"
- # set seed
- torch.random.manual_seed(0)
- batch_size = 4
- nheads = 9
- nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
- assert nheads % nheads_k == 0
- window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
- q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
- if kvpacked:
- kv = torch.randn(
- batch_size, seqlen_k, 2, nheads_k, d, device=device, dtype=dtype, requires_grad=True
- )
- else:
- k = torch.randn(
- batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
- )
- v = torch.randn(
- batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
- )
- if alibi:
- alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
- attn_bias = attn_bias_from_alibi_slopes(alibi_slopes, seqlen_q, seqlen_k, causal=causal)
- else:
- alibi_slopes, attn_bias = None, None
- if kvpacked:
- out, lse, S_dmask = flash_attn_kvpacked_func(
- q,
- kv,
- dropout_p,
- causal=causal,
- window_size=window_size,
- alibi_slopes=alibi_slopes,
- deterministic=deterministic,
- return_attn_probs=True,
- )
- else:
- out, lse, S_dmask = flash_attn_func(
- q,
- k,
- v,
- dropout_p,
- causal=causal,
- window_size=window_size,
- alibi_slopes=alibi_slopes,
- deterministic=deterministic,
- return_attn_probs=True,
- )
- if dropout_p > 0.0:
- # TODO - move to c++ mha_varlen_fwd()
- S_dmask = ck_randval_to_dropout_mask(S_dmask, dropout_p)
- S_dmask_converted = convert_flash_attn_S_to_softmax(
- S_dmask,
- seqlen_q,
- seqlen_k,
- None,
- None,
- d,
- dropout_p > 0.0,
- causal=causal,
- window_size=window_size,
- )
- dropout_mask = S_dmask_converted >= 0
- if kvpacked:
- kv_rep = repeat(kv, "b s two h d -> b s two (h g) d", g=nheads // nheads_k)
- k_rep, v_rep = kv_rep.unbind(dim=2)
- else:
- k_rep = repeat(k, "b s h d -> b s (h g) d", g=nheads // nheads_k)
- v_rep = repeat(v, "b s h d -> b s (h g) d", g=nheads // nheads_k)
- # CK does not return P. Hence, we don't test the attn here.
- else:
- dropout_mask = None
- if kvpacked:
- out_ref, attn_ref = attention_kvpacked_ref(
- q,
- kv,
- None,
- None,
- attn_bias,
- dropout_p,
- dropout_mask,
- causal=causal,
- window_size=window_size,
- )
- out_pt, attn_pt = attention_kvpacked_ref(
- q,
- kv,
- None,
- None,
- attn_bias,
- dropout_p,
- dropout_mask,
- causal=causal,
- window_size=window_size,
- upcast=False,
- reorder_ops=True,
- )
- else:
- out_ref, attn_ref = attention_ref(
- q,
- k,
- v,
- None,
- None,
- attn_bias,
- dropout_p,
- dropout_mask,
- causal=causal,
- window_size=window_size,
- )
- out_pt, attn_pt = attention_ref(
- q,
- k,
- v,
- None,
- None,
- attn_bias,
- dropout_p,
- dropout_mask,
- causal=causal,
- window_size=window_size,
- upcast=False,
- reorder_ops=True,
- )
- print(f"Output max diff: {(out - out_ref).abs().max().item()}")
- print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
- print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
- print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
- # Check that FlashAttention's numerical error is at most twice the numerical error
- # of a Pytorch implementation.
- assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
- g = torch.randn_like(out)
- if is_bwd_hdim_supported(d):
- if kvpacked:
- (
- dq,
- dkv,
- ) = torch.autograd.grad(out, (q, kv), g)
- dk, dv = dkv.unbind(2)
- (
- dq_ref,
- dkv_ref,
- ) = torch.autograd.grad(out_ref, (q, kv), g)
- dk_ref, dv_ref = dkv_ref.unbind(2)
- (
- dq_pt,
- dkv_pt,
- ) = torch.autograd.grad(out_pt, (q, kv), g)
- dk_pt, dv_pt = dkv_pt.unbind(2)
- else:
- (
- dq,
- dk,
- dv,
- ) = torch.autograd.grad(out, (q, k, v), g)
- (
- dq_ref,
- dk_ref,
- dv_ref,
- ) = torch.autograd.grad(out_ref, (q, k, v), g)
- (
- dq_pt,
- dk_pt,
- dv_pt,
- ) = torch.autograd.grad(out_pt, (q, k, v), g)
- print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
- print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
- print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
- print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
- print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
- print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
- print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
- print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
- print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
- print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
- print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
- print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
- # TODO - use 10 times to check, wait for ck to change dq type to f32
- assert (dq - dq_ref).abs().max().item() <= 10 * (dq_pt - dq_ref).abs().max().item()
- assert (dk - dk_ref).abs().max().item() <= 10 * (dk_pt - dk_ref).abs().max().item()
- assert (dv - dv_ref).abs().max().item() <= 10 * (dv_pt - dv_ref).abs().max().item()
- @pytest.mark.parametrize("kvpacked", [True, False])
- @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
- @pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
- @pytest.mark.parametrize("deterministic", [False, True])
- @pytest.mark.parametrize("alibi", [False, True])
- @pytest.mark.parametrize("local", [False, True])
- @pytest.mark.parametrize("causal", [False, True])
- @pytest.mark.parametrize("d", [32, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
- @pytest.mark.parametrize(
- "seqlen_q,seqlen_k",
- [
- (1, 147),
- (113, 203),
- (128, 217),
- (113, 211),
- (108, 256),
- (256, 512),
- (512, 256),
- (1024, 1024),
- (1023, 1024),
- (1024, 1023),
- (2048, 2048),
- ],
- )
- @pytest.mark.parametrize("dropout_p", [0.0, 0.17])
- def test_flash_attn_varlen_output(
- seqlen_q, seqlen_k, d, dropout_p, causal, local, alibi, deterministic, mha_type, dtype, kvpacked
- ):
- device = "cuda"
- # set seed
- torch.random.manual_seed(0)
- batch_size = 4
- nheads = 9
- nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
- assert nheads % nheads_k == 0
- window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
- q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
- if kvpacked:
- kv = torch.randn(
- batch_size, seqlen_k, 2, nheads_k, d, device=device, dtype=dtype, requires_grad=True
- )
- else:
- k = torch.randn(
- batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
- )
- v = torch.randn(
- batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
- )
- query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
- key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random")
- # key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode='full')
- if alibi:
- alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
- attn_bias = attn_bias_from_alibi_slopes(
- alibi_slopes, seqlen_q, seqlen_k, query_padding_mask, key_padding_mask, causal=causal
- )
- else:
- alibi_slopes, attn_bias = None, None
- if kvpacked:
- (
- q_unpad,
- kv_unpad,
- cu_seqlens_q,
- cu_seqlens_k,
- max_seqlen_q,
- max_seqlen_k,
- q,
- kv,
- output_pad_fn,
- dq_pad_fn,
- dkv_pad_fn,
- ) = generate_qkv(q, *kv.unbind(dim=2), query_padding_mask, key_padding_mask, kvpacked=True)
- out_unpad, sm_lse, S_dmask = flash_attn_varlen_kvpacked_func(
- q_unpad,
- kv_unpad,
- cu_seqlens_q,
- cu_seqlens_k,
- max_seqlen_q,
- max_seqlen_k,
- dropout_p,
- causal=causal,
- window_size=window_size,
- alibi_slopes=alibi_slopes,
- deterministic=deterministic,
- return_attn_probs=True,
- )
- else:
- (
- q_unpad,
- k_unpad,
- v_unpad,
- cu_seqlens_q,
- cu_seqlens_k,
- max_seqlen_q,
- max_seqlen_k,
- q,
- k,
- v,
- output_pad_fn,
- dq_pad_fn,
- dk_pad_fn,
- ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
- out_unpad, sm_lse, S_dmask = flash_attn_varlen_func(
- q_unpad,
- k_unpad,
- v_unpad,
- cu_seqlens_q,
- cu_seqlens_k,
- max_seqlen_q,
- max_seqlen_k,
- dropout_p,
- causal=causal,
- window_size=window_size,
- alibi_slopes=alibi_slopes,
- deterministic=deterministic,
- return_attn_probs=True,
- )
- out = output_pad_fn(out_unpad)
- if dropout_p > 0.0:
- # TODO - move to c++ mha_varlen_fwd()
- S_dmask = ck_randval_to_dropout_mask(S_dmask, dropout_p)
- S_dmask = pad_rearrange_dropout_mask_hts_to_bhss(S_dmask, cu_seqlens_q, seqlen_q, seqlen_k)
- S_dmask_converted = convert_flash_attn_S_to_softmax(
- S_dmask,
- seqlen_q,
- seqlen_k,
- query_padding_mask,
- key_padding_mask,
- d,
- dropout_p > 0.0,
- causal=causal,
- window_size=window_size,
- )
- dropout_mask = S_dmask_converted >= 0
- if kvpacked:
- kv_rep = repeat(kv, "b s two h d -> b s two (h g) d", g=nheads // nheads_k)
- k_rep, v_rep = kv_rep.unbind(dim=2)
- else:
- k_rep = repeat(k, "b s h d -> b s (h g) d", g=nheads // nheads_k)
- v_rep = repeat(v, "b s h d -> b s (h g) d", g=nheads // nheads_k)
- # CK does not return P. Hence, we don't test the attn here.
- else:
- dropout_mask = None
- if kvpacked:
- out_ref, attn_ref = attention_kvpacked_ref(
- q,
- kv,
- query_padding_mask,
- key_padding_mask,
- attn_bias,
- dropout_p,
- dropout_mask,
- causal=causal,
- window_size=window_size,
- )
- out_pt, attn_pt = attention_kvpacked_ref(
- q,
- kv,
- query_padding_mask,
- key_padding_mask,
- attn_bias,
- dropout_p,
- dropout_mask,
- causal=causal,
- window_size=window_size,
- upcast=False,
- reorder_ops=True,
- )
- else:
- out_ref, attn_ref = attention_ref(
- q,
- k,
- v,
- query_padding_mask,
- key_padding_mask,
- attn_bias,
- dropout_p,
- dropout_mask,
- causal=causal,
- window_size=window_size,
- )
- out_pt, attn_pt = attention_ref(
- q,
- k,
- v,
- query_padding_mask,
- key_padding_mask,
- attn_bias,
- dropout_p,
- dropout_mask,
- causal=causal,
- window_size=window_size,
- upcast=False,
- reorder_ops=True,
- )
- print(f"Output max diff: {(out - out_ref).abs().max().item()}")
- print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
- print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
- print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
- # Check that FlashAttention's numerical error is at most 4 times the numerical error
- # of a Pytorch implementation.
- assert (out - out_ref).abs().max().item() <= 4 * (out_pt - out_ref).abs().max().item()
- g = torch.randn_like(out)
- if is_bwd_hdim_supported(d):
- if kvpacked:
- (
- dq_unpad,
- dkv_unpad,
- ) = torch.autograd.grad(out, (q_unpad, kv_unpad), g)
- dk, dv = dkv_pad_fn(dkv_unpad).unbind(2)
- (
- dq_ref,
- dkv_ref,
- ) = torch.autograd.grad(out_ref, (q, kv), g)
- dk_ref, dv_ref = dkv_ref.unbind(2)
- (
- dq_pt,
- dkv_pt,
- ) = torch.autograd.grad(out_pt, (q, kv), g)
- dk_pt, dv_pt = dkv_pt.unbind(2)
- else:
- (
- dq_unpad,
- dk_unpad,
- dv_unpad,
- ) = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g)
- dk = dk_pad_fn(dk_unpad)
- dv = dk_pad_fn(dv_unpad)
- (
- dq_ref,
- dk_ref,
- dv_ref,
- ) = torch.autograd.grad(out_ref, (q, k, v), g)
- (
- dq_pt,
- dk_pt,
- dv_pt,
- ) = torch.autograd.grad(out_pt, (q, k, v), g)
- dq = dq_pad_fn(dq_unpad)
- print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
- print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
- print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
- print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
- print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
- print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
- print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
- print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
- print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
- print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
- print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
- print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
- # TODO - use 10 times to check, wait for ck to change dq type to f32
- assert (dq - dq_ref).abs().max().item() <= 10 * (dq_pt - dq_ref).abs().max().item()
- assert (dk - dk_ref).abs().max().item() <= 10 * (dk_pt - dk_ref).abs().max().item()
- assert (dv - dv_ref).abs().max().item() <= 10 * (dv_pt - dv_ref).abs().max().item()
|