123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390 |
- import math
- import pytest
- import torch
- import torch.nn.functional as F
- from einops import rearrange, repeat
- from flash_attn_interface import flash_attn_func, flash_attn_varlen_func, _flash_attn_forward
- from tests.test_util import generate_random_padding_mask, generate_qkv, construct_local_mask, attention_ref
- ABS_TOL = 5e-3
- REL_TOL = 1e-1
- def print_diffs(out, out_ref):
- out_1d = out.flatten()
- out_ref_1d = out_ref.flatten()
- for idx, (e_o, e_o_ref) in enumerate(zip(out_1d, out_ref_1d)):
- diff = e_o - e_o_ref
- abs_diff = abs(diff)
- abs_ref = abs(e_o_ref + 1e-5)
- relative_diff = abs_diff / abs_ref
- if abs_diff > ABS_TOL or relative_diff > REL_TOL:
- print(f"==== diff ==== {idx}, test: {e_o}, ref: {e_o_ref}")
- @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
- # @pytest.mark.parametrize("dtype", [torch.float8_e4m3fn])
- @pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
- # @pytest.mark.parametrize("mha_type", ["mha"])
- @pytest.mark.parametrize("causal", [False, True])
- # @pytest.mark.parametrize("causal", [True])
- @pytest.mark.parametrize("deterministic", [False, True])
- # @pytest.mark.parametrize("deterministic", [True])
- # @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
- # @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
- # @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
- # @pytest.mark.parametrize('d', [56, 80])
- # @pytest.mark.parametrize("d", [64, 128, 256])
- # @pytest.mark.parametrize("d", [64, 96, 128])
- # @pytest.mark.parametrize("d", [64, 128])
- @pytest.mark.parametrize("d", [64, 128, 256])
- @pytest.mark.parametrize("descale", [1.0])
- # @pytest.mark.parametrize("descale", [1.0, 2.0, 3.0, 4.0])
- @pytest.mark.parametrize(
- "seqlen_q,seqlen_k",
- [
- (1, 1),
- # (257, 1),
- (64, 128),
- (128, 128),
- (256, 256),
- (113, 203),
- (128, 217),
- (113, 211),
- (108, 256),
- (256, 512),
- (384, 256),
- (640, 128),
- (512, 256),
- (1024, 1024),
- (1023, 1024),
- (1024, 1023),
- (4096, 4096),
- ],
- )
- # @pytest.mark.parametrize('seqlen_q,seqlen_k', [(128, 128)])
- def test_flash_attn_output(
- seqlen_q, seqlen_k, d, causal, deterministic, mha_type, dtype, descale
- ):
- device = "cuda"
- if(dtype == torch.float8_e4m3fn):
- dtype_init = torch.float16
- else:
- dtype_init = dtype
- print(dtype)
- # set seed
- torch.random.manual_seed(0)
- # batch_size = 40
- # nheads = 16
- batch_size = 4
- nheads = 6
- nheads_kv = 6 if mha_type == "mha" else (2 if mha_type == "gqa" else 1)
- # nheads_kv = 2
- # batch_size = 9
- # nheads = 6
- q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype_init, requires_grad=True)
- k = torch.randn(batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype_init, requires_grad=True)
- v = torch.randn(batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype_init, requires_grad=True)
- q = q.to(dtype)
- k = k.to(dtype)
- v = v.to(dtype)
- softmax_scale = q.shape[-1] ** (-0.5)
- descale_q = torch.tensor([descale], dtype=torch.float32, device='cuda')
- descale_k = torch.tensor([descale], dtype=torch.float32, device='cuda')
- descale_v = torch.tensor([descale], dtype=torch.float32, device='cuda')
- if(dtype != torch.float8_e4m3fn):
- out, lse = flash_attn_func(q, k, v, causal=causal, deterministic=deterministic)
- else:
- out, q, k, v, out_padded, lse, S_dmask = _flash_attn_forward(
- q, k, v, softmax_scale, causal, descale_q=descale_q, descale_k=descale_k, descale_v=descale_v
- )
- q = q.to(dtype_init)
- k = k.to(dtype_init)
- v = v.to(dtype_init)
- if(dtype == torch.float8_e4m3fn):
- descale_q = descale_q.to(dtype_init)
- descale_k = descale_k.to(dtype_init)
- descale_v = descale_v.to(dtype_init)
- q = q * descale_q
- k = k * descale_k
- v = v * descale_v
-
- out_ref, attn_ref = attention_ref(
- q,
- k,
- v,
- None,
- None,
- causal=causal,
- )
- out_pt, attn_pt = attention_ref(
- q,
- k,
- v,
- None,
- None,
- causal=causal,
- upcast=False,
- reorder_ops=True,
- )
- # qk = torch.einsum('bshd,bthd->bhst', q, k).float()
- # m = qk.amax(-1, keepdim=True)
- # s_tmp = torch.exp((qk - m) / math.sqrt(d))
- # exp_sum = s_tmp.sum(-1)
- # qk = torch.einsum('bthd,bshd->bhts', q.float() / math.sqrt(d), k.float())
- # lse_ref = torch.logsumexp(qk, dim=-1)
- print(f"Output max diff: {(out - out_ref).abs().max().item()}")
- print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
- print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
- print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
-
- # if not causal:
- # print(f"LSE max diff: {(lse - lse_ref).abs().max().item()}")
- # breakpoint()
- if d <= 128 and dtype != torch.float8_e4m3fn:
- g = torch.randn_like(out)
- do_o = (g.float() * out.float()).sum(-1)
- dq, dk, dv = torch.autograd.grad(out, (q, k, v), g)
- dq_ref, dk_ref, dv_ref = torch.autograd.grad(out_ref, (q, k, v), g)
- dq_pt, dk_pt, dv_pt = torch.autograd.grad(out_pt, (q, k, v), g)
- print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
- print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
- print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
- print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
- print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
- print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
- print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
- print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
- print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
- print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
- print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
- print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
- # dS = torch.einsum('bthd,bshd->bhts', g.float(), v.float())
- # P = torch.softmax(qk, -1)
- # dP = P * (dS - do_o.unsqueeze(1))
- # dQ = torch.einsum('bhts,bshd->bthd', dP, k.float())
- # dV = torch.einsum('bhts,bthd->bshd', P, g.float())
- # dK = torch.einsum('bhts,bthd->bshd', dP, q.float())
- # breakpoint()
- # Check that FlashAttention's numerical error is at most twice the numerical error
- # of a Pytorch implementation.
- # breakpoint()
- if(dtype != torch.float8_e4m3fn):
- assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + 3e-5
- else:
- # just test correctness of fp8 kernel w/o further quantization techniques
- assert (out - out_ref).abs().max().item() <= 40 * (out_pt - out_ref).abs().max().item()
- if d <= 128 and dtype != torch.float8_e4m3fn:
- assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() + 3e-5
- assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item() + 3e-5
- assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item() + 3e-5
- @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
- # @pytest.mark.parametrize("dtype", [torch.float16])
- @pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
- # @pytest.mark.parametrize("mha_type", ["mha"])
- @pytest.mark.parametrize("causal", [False, True])
- # @pytest.mark.parametrize("causal", [False])
- @pytest.mark.parametrize("deterministic", [False, True])
- # @pytest.mark.parametrize("deterministic", [False])
- # @pytest.mark.parametrize("add_unused_qkv", [False, True])
- @pytest.mark.parametrize("add_unused_qkv", [True])
- # @pytest.mark.parametrize("d", [32, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
- # @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
- # @pytest.mark.parametrize('d', [128])
- # @pytest.mark.parametrize("d", [64, 128, 256])
- @pytest.mark.parametrize("d", [64, 128])
- # @pytest.mark.parametrize("d", [128])
- @pytest.mark.parametrize(
- "seqlen_q,seqlen_k",
- [
- (1, 1),
- (1, 3),
- (2, 1),
- (511, 1),
- (3, 513),
- (64, 128),
- (113, 203),
- (128, 128),
- (128, 217),
- (113, 211),
- (108, 256),
- (256, 512),
- (384, 256),
- (512, 256),
- (640, 128),
- (1024, 1024),
- (1023, 1024),
- (1024, 1023),
- (2048, 2048),
- ],
- )
- # @pytest.mark.parametrize('seqlen_q,seqlen_k', [(128, 128)])
- def test_flash_attn_varlen_output(
- seqlen_q, seqlen_k, d, causal, deterministic, add_unused_qkv, mha_type, dtype
- ):
- if (
- max(seqlen_q, seqlen_k) >= 2048
- and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
- ):
- pytest.skip() # Reference implementation OOM
- device = "cuda"
- # set seed
- torch.random.manual_seed(0)
- # batch_size = 1
- # nheads = 1
- batch_size = 9
- nheads = 6
- nheads_kv = 6 if mha_type == "mha" else (2 if mha_type == "gqa" else 1)
-
- q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
- k = torch.randn(
- batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype, requires_grad=True
- )
- v = torch.randn(
- batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype, requires_grad=True
- )
- query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random", zero_lengths=False)
- key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random", zero_lengths=True)
- # key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode='full')
- def _gen_unused_masks(padding_mask, add_unused, max_seq_len, bs, device):
- if add_unused:
- another_mask = generate_random_padding_mask(max_seq_len, bs, device)
- attn_mask = torch.logical_and(padding_mask, another_mask)
- unused_mask = torch.logical_xor(torch.logical_or(padding_mask, another_mask), attn_mask)
- else:
- attn_mask = padding_mask
- unused_mask = None
- return attn_mask, unused_mask
- query_padding_mask, query_unused_mask = _gen_unused_masks(query_padding_mask, add_unused_qkv, seqlen_q, batch_size, q.device)
- key_padding_mask, key_unused_mask = _gen_unused_masks(key_padding_mask, add_unused_qkv, seqlen_k, batch_size, k.device)
- (
- q_unpad,
- k_unpad,
- v_unpad,
- cu_seqlens_q,
- cu_seqlens_k,
- seqused_q,
- seqused_k,
- max_seqlen_q,
- max_seqlen_k,
- q,
- k,
- v,
- output_pad_fn,
- dq_pad_fn,
- dk_pad_fn,
- ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False, query_unused_mask=query_unused_mask, key_unused_mask=key_unused_mask)
- # print("cu_seqlens_q: ", cu_seqlens_q)
- # print("cu_seqlens_k: ", cu_seqlens_k)
- # print("q_unpad, shape: ", q_unpad.shape)
- # print("k_unpad, shape: ", k_unpad.shape)
- # print("v_unpad, shape: ", v_unpad.shape)
- out_unpad, sm_lse = flash_attn_varlen_func(
- q_unpad,
- k_unpad,
- v_unpad,
- cu_seqlens_q,
- cu_seqlens_k,
- max_seqlen_q,
- max_seqlen_k,
- causal=causal,
- deterministic=deterministic,
- seqused_q=seqused_q,
- seqused_k=seqused_k,
- )
- out = output_pad_fn(out_unpad)
- q_zero_masking = rearrange(query_unused_mask, "b s -> b s 1 1")
- out.masked_fill_(q_zero_masking, 0.0)
- dropout_mask = None
- out_ref, attn_ref = attention_ref(
- q,
- k,
- v,
- query_padding_mask,
- key_padding_mask,
- causal=causal,
- )
- out_pt, attn_pt = attention_ref(
- q,
- k,
- v,
- query_padding_mask,
- key_padding_mask,
- causal=causal,
- upcast=False,
- reorder_ops=True,
- )
- print(f"Output max diff: {(out - out_ref).abs().max().item()}")
- print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
- print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
- print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
- g = torch.randn_like(out)
- if d <= 128:
- (
- dq_unpad,
- dk_unpad,
- dv_unpad,
- ) = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g)
- dk = dk_pad_fn(dk_unpad)
- dv = dk_pad_fn(dv_unpad)
- k_zero_masking = rearrange(key_unused_mask, "b s -> b s 1 1")
- dk.masked_fill_(k_zero_masking, 0.0)
- dv.masked_fill_(k_zero_masking, 0.0)
- (
- dq_ref,
- dk_ref,
- dv_ref,
- ) = torch.autograd.grad(out_ref, (q, k, v), g)
- zero_masking = rearrange(torch.logical_not(torch.any(key_padding_mask, 1)), "b -> b 1 1 1")
- dk_ref.masked_fill_(zero_masking, 0.0)
- dv_ref.masked_fill_(zero_masking, 0.0)
- (
- dq_pt,
- dk_pt,
- dv_pt,
- ) = torch.autograd.grad(out_pt, (q, k, v), g)
- dk_pt.masked_fill_(zero_masking, 0.0)
- dv_pt.masked_fill_(zero_masking, 0.0)
- dq = dq_pad_fn(dq_unpad)
- dq.masked_fill_(q_zero_masking, 0.0)
- print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
- print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
- print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
- print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
- print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
- print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
- print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
- print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
- print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
- print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
- print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
- print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
- # Check that FlashAttention's numerical error is at most twice the numerical error
- # of a Pytorch implementation.
- assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
- if d <= 128:
- assert (dq - dq_ref).abs().max().item() < 1e-4 or (dq - dq_ref).abs().max().item() <= 3 * (dq_pt - dq_ref).abs().max().item()
- assert (dk - dk_ref).abs().max().item() < 1e-4 or (dk - dk_ref).abs().max().item() <= 3 * (dk_pt - dk_ref).abs().max().item()
- assert (dk - dk_ref).abs().max().item() < 1e-4 or (dv - dv_ref).abs().max().item() <= 3 * (dv_pt - dv_ref).abs().max().item()
|