123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167 |
- # Adapted from https://github.com/NVIDIA/apex/blob/master/apex/contrib/layer_norm/layer_norm.py
- import torch
- from torch.nn import init
- # from apex._autocast_utils import _cast_if_autocast_enabled
- import dropout_layer_norm
- def _dropout_add_layer_norm_forward(x0, x1, gamma, beta, rowscale, dropout_p, epsilon,
- residual_in_fp32):
- """ Assume that arguments are contiguous
- """
- hidden_size = gamma.numel()
- x0mat = x0.view((-1, hidden_size))
- x1mat = x1.view((-1, hidden_size)) if x1 is not None else None
- rowscale = rowscale.view(-1) if rowscale is not None else None
- zmat, xmat, dmask, mu, rsigma = dropout_layer_norm.dropout_add_ln_fwd(
- x0mat, x1mat, gamma, beta, rowscale, dropout_p, epsilon, None, residual_in_fp32
- )
- # dmask is None if dropout_p == 0.0
- # xmat is None if dropout_p == 0.0 and x1 is None and residual_dtype != input_dtype
- return zmat, xmat if xmat is not None else x0mat, dmask, mu, rsigma
- def _dropout_add_layer_norm_backward(dz, x, dmask, mu, rsigma, gamma, rowscale, dropout_p,
- has_residual):
- """ Assume that arguments are contiguous
- """
- # dmask is None if dropout_p == 0.0
- hidden_size = gamma.numel()
- xmat = x.view((-1, hidden_size))
- dzmat = dz.view(xmat.shape)
- rowscale = rowscale.view(-1) if rowscale is not None else None
- dx0mat, dx1mat, dgamma, dbeta, _, _ = dropout_layer_norm.dropout_add_ln_bwd(
- dzmat, xmat, dmask, mu, rsigma, gamma, rowscale, dropout_p, has_residual
- )
- # dx1mat is None if not has_residual
- return dx0mat, dx1mat, dgamma, dbeta
- def _dropout_add_layer_norm_prenorm_backward(dz, dx, x, dmask, mu, rsigma, gamma, rowscale,
- dropout_p, has_residual):
- """ Assume that arguments are contiguous
- """
- hidden_size = gamma.numel()
- xmat = x.view((-1, hidden_size))
- dzmat = dz.view(xmat.shape)
- dxmat = dx.view(xmat.shape)
- rowscale = rowscale.view(-1) if rowscale is not None else None
- dx0mat, dx1mat, dgamma, dbeta, _, _ = dropout_layer_norm.dropout_add_ln_prenorm_bwd(
- dzmat, dxmat, xmat, dmask, mu, rsigma, gamma, rowscale, dropout_p, has_residual
- )
- return dx0mat, dx1mat, dgamma, dbeta
- class DropoutAddLayerNormFN(torch.autograd.Function):
- @staticmethod
- def forward(ctx, x0, x1, gamma, beta, rowscale, dropout_p, epsilon, residual_in_fp32,
- return_dmask=False):
- x0 = x0.contiguous()
- x1 = x1.contiguous() if x1 is not None else None
- gamma = gamma.contiguous()
- beta = beta.contiguous()
- rowscale = rowscale.contiguous() if rowscale is not None else None
- zmat, xmat, dmask, mu, rsigma = _dropout_add_layer_norm_forward(
- x0, x1, gamma, beta, rowscale, dropout_p, epsilon, residual_in_fp32
- )
- ctx.save_for_backward(xmat.view(x0.shape), dmask, gamma, mu, rsigma, rowscale)
- ctx.dropout_p = dropout_p
- ctx.has_residual = x1 is not None
- if not return_dmask:
- return zmat.view(x0.shape)
- else:
- dmask = (dmask.view(x0.shape) if dropout_p > 0.
- else torch.ones(x0.shape, dtype=torch.uint8, device=x0.device))
- ctx.mark_non_differentiable(dmask)
- return zmat.view(x0.shape), dmask
- @staticmethod
- def backward(ctx, dz, *args):
- # assert dz.is_contiguous()
- dz = dz.contiguous() # this happens!
- x, dmask, gamma, mu, rsigma, rowscale = ctx.saved_tensors
- dropout_p = ctx.dropout_p
- has_residual = ctx.has_residual
- dx0mat, dx1mat, dgamma, dbeta = _dropout_add_layer_norm_backward(
- dz, x, dmask, mu, rsigma, gamma, rowscale, dropout_p, has_residual
- )
- dx0 = dx0mat.view(x.shape)
- dx1 = dx1mat.view(x.shape) if dx1mat is not None else None
- return dx0, dx1, dgamma, dbeta, None, None, None, None, None
- class DropoutAddLayerNormPrenormFN(torch.autograd.Function):
- @staticmethod
- def forward(ctx, x0, x1, gamma, beta, rowscale, dropout_p, epsilon, residual_in_fp32,
- return_dmask=False):
- x0 = x0.contiguous()
- x1 = x1.contiguous() if x1 is not None else None
- gamma = gamma.contiguous()
- beta = beta.contiguous()
- rowscale = rowscale.contiguous() if rowscale is not None else None
- zmat, xmat, dmask, mu, rsigma = _dropout_add_layer_norm_forward(
- x0, x1, gamma, beta, rowscale, dropout_p, epsilon, residual_in_fp32
- )
- ctx.save_for_backward(xmat.view(x0.shape), dmask, gamma, mu, rsigma, rowscale)
- ctx.dropout_p = dropout_p
- ctx.has_residual = x1 is not None
- if not return_dmask:
- return zmat.view(x0.shape), xmat.view(x0.shape)
- else:
- dmask = (dmask.view(x0.shape) if dropout_p > 0.
- else torch.ones(x0.shape, dtype=torch.uint8, device=x0.device))
- ctx.mark_non_differentiable(dmask)
- return zmat.view(x0.shape), xmat.view(x0.shape), dmask
- @staticmethod
- def backward(ctx, dz, dx, *args):
- # assert dz.is_contiguous()
- dz = dz.contiguous() # this happens!
- dx = dx.contiguous() # this happens!
- x, dmask, gamma, mu, rsigma, rowscale = ctx.saved_tensors
- dropout_p = ctx.dropout_p
- has_residual = ctx.has_residual
- dx0mat, dx1mat, dgamma, dbeta = _dropout_add_layer_norm_prenorm_backward(
- dz, dx, x, dmask, mu, rsigma, gamma, rowscale, dropout_p, has_residual
- )
- dx0 = dx0mat.view(x.shape)
- dx1 = dx1mat.view(x.shape) if dx1mat is not None else None
- return dx0, dx1, dgamma, dbeta, None, None, None, None, None
- def dropout_add_layer_norm(x0, x1, weight, bias, dropout_p, epsilon, rowscale=None,
- prenorm=False, residual_in_fp32=False,
- return_dropout_mask=False):
- """residual_in_fp32 only has an effect if x1 is None.
- Otherwise residual dtype is x1.dtype.
- """
- args = (x0, x1, weight, bias, rowscale, dropout_p, epsilon, residual_in_fp32,
- return_dropout_mask)
- if not prenorm:
- return DropoutAddLayerNormFN.apply(*args)
- else:
- return DropoutAddLayerNormPrenormFN.apply(*args)
- class DropoutAddLayerNorm(torch.nn.Module):
- def __init__(self, hidden_size, prenorm=False, p=0.5, eps=1e-5, residual_in_fp32=False,
- device=None, dtype=None):
- factory_kwargs = {'device': device, 'dtype': dtype}
- super().__init__()
- self.prenorm = prenorm
- self.p = p
- self.epsilon = eps
- self.residual_in_fp32 = residual_in_fp32
- self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
- self.bias = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
- self.reset_parameters()
- def reset_parameters(self):
- init.ones_(self.weight)
- init.zeros_(self.bias)
- def forward(self, x0, x1=None):
- return dropout_add_layer_norm(x0, x1, self.weight, self.bias,
- self.p if self.training else 0.0, self.epsilon,
- prenorm=self.prenorm, residual_in_fp32=self.residual_in_fp32)
|