123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218 |
- # Adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py
- import torch
- import torch.nn.functional as F
- from einops import rearrange, repeat
- class IndexFirstAxis(torch.autograd.Function):
- @staticmethod
- def forward(ctx, input, indices):
- ctx.save_for_backward(indices)
- assert input.ndim >= 2
- ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
- second_dim = other_shape.numel()
- # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
- # return input[indices]
- return torch.gather(
- rearrange(input, "b ... -> b (...)"), 0, repeat(indices, "z -> z d", d=second_dim)
- ).reshape(-1, *other_shape)
- @staticmethod
- def backward(ctx, grad_output):
- (indices,) = ctx.saved_tensors
- assert grad_output.ndim >= 2
- other_shape = grad_output.shape[1:]
- grad_output = rearrange(grad_output, "b ... -> b (...)")
- grad_input = torch.zeros(
- [ctx.first_axis_dim, grad_output.shape[1]],
- device=grad_output.device,
- dtype=grad_output.dtype,
- )
- # TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
- # grad_input[indices] = grad_output
- grad_input.scatter_(0, repeat(indices, "z -> z d", d=grad_output.shape[1]), grad_output)
- return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
- index_first_axis = IndexFirstAxis.apply
- class IndexPutFirstAxis(torch.autograd.Function):
- @staticmethod
- def forward(ctx, values, indices, first_axis_dim):
- ctx.save_for_backward(indices)
- assert indices.ndim == 1
- assert values.ndim >= 2
- output = torch.zeros(
- first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype
- )
- # TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
- output[indices] = values
- # output.scatter_(0, repeat(indices, 'z -> z d', d=values.shape[1]), values)
- return output
- @staticmethod
- def backward(ctx, grad_output):
- (indices,) = ctx.saved_tensors
- # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
- grad_values = grad_output[indices]
- # grad_values = torch.gather(grad_output, 0, repeat(indices, 'z -> z d', d=grad_output.shape[1]))
- return grad_values, None, None
- index_put_first_axis = IndexPutFirstAxis.apply
- class IndexFirstAxisResidual(torch.autograd.Function):
- @staticmethod
- def forward(ctx, input, indices):
- ctx.save_for_backward(indices)
- assert input.ndim >= 2
- ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
- second_dim = other_shape.numel()
- # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
- output = input[indices]
- # We don't want to reshape input (b ... -> b (...)) since it could change the channel_last
- # memory format to channel_first. In other words, input might not be contiguous.
- # If we don't detach, Pytorch complains about output being a view and is being modified inplace
- return output, input.detach()
- @staticmethod
- def backward(ctx, grad_output, grad_residual):
- (indices,) = ctx.saved_tensors
- assert grad_output.ndim >= 2
- other_shape = grad_output.shape[1:]
- assert grad_residual.shape[1:] == other_shape
- grad_input = grad_residual
- # grad_input[indices] += grad_output
- indices = indices.reshape(indices.shape[0], *((1,) * (grad_output.ndim - 1)))
- indices = indices.expand_as(grad_output)
- grad_input.scatter_add_(0, indices, grad_output)
- return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
- index_first_axis_residual = IndexFirstAxisResidual.apply
- def unpad_input(hidden_states, attention_mask, unused_mask=None):
- """
- Arguments:
- hidden_states: (batch, seqlen, ...)
- attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
- unused_mask: (batch, seqlen), bool / int, 1 means the element is allocated but unused.
- Return:
- hidden_states: (total_nnz, ...), where total_nnz = number of tokens selected in attention_mask + unused_mask.
- indices: (total_nnz), the indices of masked tokens from the flattened input sequence.
- cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states.
- max_seqlen_in_batch: int
- seqused: (batch), returns the number of tokens selected in attention_mask + unused_mask.
- """
- all_masks = (attention_mask + unused_mask) if unused_mask is not None else attention_mask
- seqlens_in_batch = all_masks.sum(dim=-1, dtype=torch.int32)
- used_seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
- indices = torch.nonzero(all_masks.flatten(), as_tuple=False).flatten()
- max_seqlen_in_batch = seqlens_in_batch.max().item()
- cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
- # TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
- # bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
- # times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
- # index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
- # so we write custom forward and backward to make it a bit faster.
- return (
- index_first_axis(rearrange(hidden_states, "b s ... -> (b s) ..."), indices),
- indices,
- cu_seqlens,
- max_seqlen_in_batch,
- used_seqlens_in_batch,
- )
- def unpad_input_for_concatenated_sequences(hidden_states, attention_mask_in_length):
- """
- Supports concatenating short samples in one sequence. The attention_mask_in_length is utilized to mask other short samples. It helps efficient training of variant lengths-based samples (e.g., the supervised fine-tuning task in large language model).
- The motivation for this function is explained [here](https://github.com/Dao-AILab/flash-attention/issues/432#issuecomment-1668822286).
-
- For example, if batch = 3 and seqlen = 6, the attention_mask_in_length is:
- ```
- [
- [2, 3, 0, 0, 0, 0],
- [3, 2, 0, 0, 0, 0],
- [6, 0, 0, 0, 0, 0]
- ]
- ```
- , which refers to the 3D-attention mask:
- ```
- [
- [
- [1, 0, 0, 0, 0, 0],
- [1, 1, 0, 0, 0, 0],
- [0, 0, 1, 0, 0, 0],
- [0, 0, 1, 1, 0, 0],
- [0, 0, 1, 1, 1, 0],
- [0, 0, 0, 0, 0, 1]
- ],
- [
- [1, 0, 0, 0, 0, 0],
- [1, 1, 0, 0, 0, 0],
- [1, 1, 1, 0, 0, 0],
- [0, 0, 0, 1, 0, 0],
- [0, 0, 0, 1, 1, 0],
- [0, 0, 0, 0, 0, 1]
- ],
- [
- [1, 0, 0, 0, 0, 0],
- [1, 1, 0, 0, 0, 0],
- [1, 1, 1, 0, 0, 0],
- [1, 1, 1, 1, 0, 0],
- [1, 1, 1, 1, 1, 0],
- [1, 1, 1, 1, 1, 1]
- ]
- ]
- ```.
- Arguments:
- hidden_states: (batch, seqlen, ...)
- attention_mask_in_length: (batch, seqlen), int, a nonzero number (e.g., 1, 2, 3, etc.) means length of concatenated sequence in b-th batch, and 0 means none.
- Return:
- hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
- indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence.
- cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states.
- max_seqlen_in_batch: int
- """
- length = attention_mask_in_length.sum(dim=-1)
- seqlen = attention_mask_in_length.size(-1)
- attention_mask_2d = torch.arange(seqlen, device=length.device, dtype=length.dtype).expand(len(length), seqlen) < length.unsqueeze(1)
- real_indices_idx = torch.nonzero(attention_mask_in_length.flatten(), as_tuple=False).flatten()
- seqlens_in_batch = attention_mask_in_length.flatten()[real_indices_idx]
- indices = torch.nonzero(attention_mask_2d.flatten(), as_tuple=False).flatten()
- max_seqlen_in_batch = seqlens_in_batch.max().item()
- cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
- # TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
- # bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
- # times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
- # index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
- # so we write custom forward and backward to make it a bit faster.
- return (
- index_first_axis(rearrange(hidden_states, "b s ... -> (b s) ..."), indices),
- indices,
- cu_seqlens,
- max_seqlen_in_batch,
- )
- def pad_input(hidden_states, indices, batch, seqlen):
- """
- Arguments:
- hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
- indices: (total_nnz), the indices that represent the non-masked tokens of the original padded input sequence.
- batch: int, batch size for the padded sequence.
- seqlen: int, maximum sequence length for the padded sequence.
- Return:
- hidden_states: (batch, seqlen, ...)
- """
- dim = hidden_states.shape[-1]
- # output = torch.zeros((batch * seqlen), dim, device=hidden_states.device, dtype=hidden_states.dtype)
- # output[indices] = hidden_states
- output = index_put_first_axis(hidden_states, indices, batch * seqlen)
- return rearrange(output, "(b s) ... -> b s ...", b=batch)
|