rms_norm.py 2.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859
  1. # Copyright (c) 2022, Tri Dao.
  2. # Adapted from https://github.com/NVIDIA/apex/blob/master/apex/contrib/layer_norm/layer_norm.py
  3. import torch
  4. from torch.nn import init
  5. from flash_attn.ops.layer_norm import DropoutAddLayerNormFn, DropoutAddLayerNormSubsetFn
  6. def rms_norm(x, weight, epsilon):
  7. return DropoutAddLayerNormFn.apply(x, None, weight, None, None, None, 0.0, epsilon, False,
  8. False, True)
  9. def dropout_add_rms_norm(x0, residual, weight, bias, dropout_p, epsilon, rowscale=None,
  10. layerscale=None, prenorm=False, residual_in_fp32=False,
  11. return_dropout_mask=False):
  12. """residual_in_fp32 only has an effect if residual is None.
  13. Otherwise residual dtype is residual.dtype.
  14. """
  15. return DropoutAddLayerNormFn.apply(
  16. x0, residual, weight, bias, rowscale, layerscale, dropout_p, epsilon, residual_in_fp32, prenorm,
  17. True, return_dropout_mask
  18. )
  19. def dropout_add_rms_norm_subset(x0, residual, weight, bias, dropout_p, epsilon, layerscale=None,
  20. x0_subset=None, out_subset=None, rowscale_const=1.0,
  21. out_numrows=0, prenorm=False, residual_in_fp32=False,
  22. return_dropout_mask=False):
  23. """residual_in_fp32 only has an effect if residual is None.
  24. Otherwise residual dtype is residual.dtype.
  25. """
  26. return DropoutAddLayerNormSubsetFn.apply(
  27. x0, residual, weight, bias, layerscale, x0_subset, out_subset, dropout_p, epsilon,
  28. rowscale_const, out_numrows, residual_in_fp32, prenorm, True, return_dropout_mask
  29. )
  30. class DropoutAddRMSNorm(torch.nn.Module):
  31. def __init__(self, hidden_size, prenorm=False, p=0.0, eps=1e-5, residual_in_fp32=False,
  32. device=None, dtype=None):
  33. factory_kwargs = {'device': device, 'dtype': dtype}
  34. super().__init__()
  35. self.prenorm = prenorm
  36. self.p = p
  37. self.epsilon = eps
  38. self.residual_in_fp32 = residual_in_fp32
  39. self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
  40. self.register_parameter('bias', None)
  41. self.reset_parameters()
  42. def reset_parameters(self):
  43. init.ones_(self.weight)
  44. def forward(self, x0, residual=None):
  45. return dropout_add_rms_norm(x0, residual, self.weight, None,
  46. self.p if self.training else 0.0, self.epsilon,
  47. prenorm=self.prenorm, residual_in_fp32=self.residual_in_fp32)