123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 |
- import math
- import torch
- import torch.nn.functional as F
- import pytest
- from einops import rearrange
- from flash_attn.ops.fused_dense import FusedDense, FusedDenseGeluDense
- @pytest.mark.parametrize('dtype', [torch.float16, torch.bfloat16])
- @pytest.mark.parametrize('return_residual', [False, True])
- @pytest.mark.parametrize('has_bias', [True, False])
- @pytest.mark.parametrize('out_features', [1024, 4096])
- @pytest.mark.parametrize('in_features', [1024, 4096])
- def test_fused_linear_bias(in_features, out_features, has_bias, return_residual, dtype):
- device = 'cuda'
- rtol, atol = (3e-3, 1e-2) if dtype == torch.bfloat16 else (3e-3, 1e-3)
- # set seed
- torch.random.manual_seed(0)
- batch_size = 8
- seqlen = 512
- x_pt = torch.randn(batch_size, seqlen, in_features, device=device, dtype=dtype,
- requires_grad=True)
- x = x_pt.detach().clone().requires_grad_()
- model_pt = torch.nn.Linear(in_features, out_features, bias=has_bias, device=device, dtype=dtype)
- model = FusedDense(in_features, out_features, bias=has_bias, return_residual=return_residual,
- device=device, dtype=dtype)
- with torch.no_grad():
- model.weight.copy_(model_pt.weight)
- if has_bias:
- model.bias.copy_(model_pt.bias)
- out_pt = model_pt(x_pt)
- if not return_residual:
- out = model(x)
- else:
- out, x_copy = model(x)
- x_copy = (x_copy[..., :out_features] if out_features < in_features
- else F.pad(x_copy, (0, out_features - in_features)))
- x_pt_copy = (x_pt[..., :out_features] if out_features < in_features
- else F.pad(x_pt, (0, out_features - in_features)))
- # Just add some random function of the residual
- out_pt = out_pt + F.gelu(x_pt_copy)
- out = out + F.gelu(x_copy)
- # with torch.no_grad():
- # out_fl = F.linear(x_pt.float(), model.weight.float(), model.bias.float()).half()
- assert torch.allclose(out, out_pt, rtol=rtol, atol=atol)
- # If we don't divide by batch_size, the gradient gets a bit too large.
- g = torch.randn_like(out) / 32
- out_pt.backward(g)
- out.backward(g)
- assert torch.allclose(x.grad, x_pt.grad, rtol=rtol, atol=atol)
- # The error for d_weight and d_bias is quite a bit higher
- assert torch.allclose(model.weight.grad, model_pt.weight.grad, rtol=rtol, atol=atol * 10)
- if has_bias:
- assert torch.allclose(model.bias.grad, model_pt.bias.grad, rtol=rtol, atol=atol * 5)
- @pytest.mark.parametrize('dtype', [torch.float16, torch.bfloat16])
- @pytest.mark.parametrize('heuristic', [0, -1])
- @pytest.mark.parametrize('checkpoint_lvl', [0, 1, 2])
- @pytest.mark.parametrize('return_residual', [False, True])
- @pytest.mark.parametrize('has_bias2', [True, False])
- @pytest.mark.parametrize('has_bias1', [True, False])
- @pytest.mark.parametrize('out_features', [1024, 4096])
- @pytest.mark.parametrize('in_features', [1024, 4096])
- def test_fused_dense_gelu_dense(in_features, out_features, has_bias1, has_bias2, return_residual,
- checkpoint_lvl, heuristic, dtype):
- device = 'cuda'
- rtol, atol = (3e-3, 3e-2) if dtype == torch.bfloat16 else (3e-3, 1e-3)
- # set seed
- torch.random.manual_seed(0)
- batch_size = 8
- seqlen = 512
- x_pt = torch.randn(batch_size, seqlen, in_features, device=device, dtype=dtype,
- requires_grad=True)
- x = x_pt.detach().clone().requires_grad_()
- model_pt_fc1 = torch.nn.Linear(in_features, out_features, bias=has_bias1, device=device,
- dtype=dtype)
- model_pt_fc2 = torch.nn.Linear(out_features, in_features, bias=has_bias2, device=device,
- dtype=dtype)
- model = FusedDenseGeluDense(in_features, out_features, in_features, bias1=has_bias1,
- bias2=has_bias2, return_residual=return_residual,
- checkpoint_lvl=checkpoint_lvl, heuristic=heuristic,
- device=device, dtype=dtype)
- with torch.no_grad():
- model.fc1.weight.copy_(model_pt_fc1.weight)
- if has_bias1:
- model.fc1.bias.copy_(model_pt_fc1.bias)
- model.fc2.weight.copy_(model_pt_fc2.weight)
- if has_bias2:
- model.fc2.bias.copy_(model_pt_fc2.bias)
- out_pt = model_pt_fc2(F.gelu(model_pt_fc1(x_pt), approximate='tanh'))
- if not return_residual:
- out = model(x)
- else:
- out, x_copy = model(x)
- # Just add some random function of the residual
- out_pt = out_pt + F.gelu(x_pt)
- out = out + F.gelu(x_copy)
- assert torch.allclose(out, out_pt, rtol=rtol, atol=atol)
- # If we don't divide by batch_size, the gradient gets a bit too large.
- g = torch.randn_like(out) / 32
- out_pt.backward(g)
- out.backward(g)
- assert torch.allclose(x.grad, x_pt.grad, rtol=rtol, atol=atol)
- # The error for d_weight and d_bias is quite a bit higher
- assert torch.allclose(model.fc1.weight.grad, model_pt_fc1.weight.grad, rtol=rtol, atol=atol * 10)
- if has_bias1:
- assert torch.allclose(model.fc1.bias.grad, model_pt_fc1.bias.grad, rtol=rtol, atol=atol * 5)
- assert torch.allclose(model.fc2.weight.grad, model_pt_fc2.weight.grad, rtol=rtol, atol=atol * 10)
- if has_bias2:
- assert torch.allclose(model.fc2.bias.grad, model_pt_fc2.bias.grad, rtol=rtol, atol=atol * 5)
|