123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269 |
- # Adapted from https://github.com/NVIDIA/apex/blob/master/apex/fused_dense/fused_dense.py
- # We make it work with pytorch amp and with bfloat16.
- from typing import Optional
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from torch import Tensor
- from torch.cuda.amp import custom_bwd, custom_fwd
- # import fused_dense_cuda # from apex
- import fused_dense_lib as fused_dense_cuda
- from flash_attn.ops.gelu_activation import gelu_bwd
- class FusedDenseFunc(torch.autograd.Function):
- @staticmethod
- @custom_fwd
- def forward(ctx, x, weight, bias, return_residual=False):
- if torch.is_autocast_enabled():
- dtype = torch.get_autocast_gpu_dtype()
- x, weight = [a.to(dtype=dtype) for a in [x, weight]]
- bias = bias.to(dtype=dtype) if bias is not None else None
- ctx.return_residual = return_residual
- x = x.contiguous()
- weight = weight.contiguous()
- ctx.save_for_backward(x, weight)
- batch_shape, n = x.shape[:-1], x.shape[-1]
- batch_dim = batch_shape.numel()
- assert batch_dim <= 64 * 1024, 'fused_dense only supports dimension at most 64k'
- output = F.linear(x, weight, bias)
- return output if not return_residual else (output, x)
- @staticmethod
- @custom_bwd
- def backward(ctx, grad_output, *args):
- grad_output = grad_output.contiguous()
- if ctx.return_residual:
- grad_input, = args
- grad_input = grad_input.contiguous()
- x, weight = ctx.saved_tensors
- batch_shape, n = x.shape[:-1], x.shape[-1]
- batch_dim = batch_shape.numel()
- grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
- if ctx.needs_input_grad[1]:
- grad_weight, grad_bias = fused_dense_cuda.linear_bias_wgrad(
- x.reshape(batch_dim, n), grad_output, ctx.needs_input_grad[2]
- )
- else:
- grad_weight = None
- grad_bias = grad_output if ctx.needs_input_grad[2] else None
- if ctx.needs_input_grad[0]:
- if not ctx.return_residual:
- grad_input = F.linear(grad_output, weight.t())
- else:
- grad_input = torch.addmm(grad_input.reshape(batch_dim, n), grad_output, weight)
- grad_input = grad_input.reshape_as(x)
- else:
- grad_input = None
- return grad_input, grad_weight, grad_bias, None
- def fused_dense_func(x: Tensor, weight: Tensor, bias: Optional[Tensor] = None,
- return_residual: bool = False):
- batch_dim = x.shape[:-1].numel()
- dtype_eligible = (x.dtype in [torch.float16, torch.bfloat16]
- or (x.dtype == torch.float32 and torch.is_autocast_enabled()))
- if (x.is_cuda and weight.is_cuda and (bias is None or bias.is_cuda) and batch_dim <= 64 * 1024
- and dtype_eligible):
- return FusedDenseFunc.apply(x, weight, bias, return_residual)
- else:
- out = F.linear(x, weight, bias)
- return out if not return_residual else (out, x)
- class FusedDense(nn.Linear):
- def __init__(self, in_features: int, out_features: int, bias: bool = True,
- return_residual: bool = False, device=None, dtype=None) -> None:
- super().__init__(in_features, out_features, bias=bias, device=device, dtype=dtype)
- self.return_residual = return_residual
- def forward(self, x):
- return fused_dense_func(x, self.weight, self.bias, return_residual=self.return_residual)
- class FusedDenseGeluDenseFunc(torch.autograd.Function):
- @staticmethod
- @custom_fwd
- def forward(ctx, x, weight1, bias1, weight2, bias2, save_gelu_in=True, return_residual=False,
- checkpoint_lvl=0, heuristic=0):
- """checkpoint_lvl:
- 0: no recomputation in the bwd
- 1: recompute gelu_out in the bwd
- 2: recompute gelu_in and gelu_out in the bwd
- """
- assert -1 <= heuristic <= 4
- if torch.is_autocast_enabled():
- dtype = torch.get_autocast_gpu_dtype()
- x, weight1, weight2 = [a.to(dtype=dtype) for a in [x, weight1, weight2]]
- bias1 = bias1.to(dtype=dtype) if bias1 is not None else None
- bias2 = bias2.to(dtype=dtype) if bias2 is not None else None
- if not save_gelu_in:
- checkpoint_lvl = 2
- assert checkpoint_lvl in [0, 1, 2]
- ctx.return_residual = return_residual
- x = x.contiguous()
- weight1 = weight1.contiguous()
- bias1 = bias1.contiguous() if bias1 is not None else None
- weight2 = weight2.contiguous()
- bias2 = bias2.contiguous() if bias2 is not None else None
- batch_shape, n = x.shape[:-1], x.shape[-1]
- batch_dim = batch_shape.numel()
- assert batch_dim <= 64 * 1024, 'fused_dense only supports dimension at most 64k'
- if heuristic == -1:
- gelu_in = F.linear(x, weight1, bias1)
- output1 = F.gelu(gelu_in, approximate='tanh')
- # gelu_in = F.linear(x.reshape(batch_dim, n), weight1) # This is before adding bias1
- # with torch.jit.fuser('fuser2'):
- # output1 = bias_gelu(gelu_in, bias1)
- else:
- output1, *rest = fused_dense_cuda.linear_gelu_forward(x.reshape(batch_dim, n), weight1,
- bias1, save_gelu_in, heuristic)
- if save_gelu_in:
- gelu_in = rest[0]
- output2 = F.linear(output1, weight2, bias2)
- ctx.checkpoint_lvl = checkpoint_lvl
- ctx.heuristic = heuristic
- if checkpoint_lvl == 0:
- ctx.save_for_backward(x, weight1, weight2, gelu_in, output1)
- elif checkpoint_lvl == 1:
- ctx.save_for_backward(x, weight1, weight2, gelu_in)
- elif checkpoint_lvl == 2:
- ctx.save_for_backward(x, weight1, weight2, bias1)
- output2 = output2.reshape(*batch_shape, output2.shape[-1])
- return output2 if not return_residual else (output2, x)
- @staticmethod
- @custom_bwd
- def backward(ctx, grad_output, *args):
- grad_output = grad_output.contiguous()
- checkpoint_lvl = ctx.checkpoint_lvl
- if ctx.return_residual:
- grad_input, = args
- grad_input = grad_input.contiguous()
- x, weight1, weight2, *rest = ctx.saved_tensors
- batch_shape, n = x.shape[:-1], x.shape[-1]
- batch_dim = batch_shape.numel()
- if checkpoint_lvl == 0:
- gelu_in, output1 = rest
- elif checkpoint_lvl == 1:
- gelu_in, = rest
- output1 = F.gelu(gelu_in, approximate='tanh')
- elif checkpoint_lvl == 2:
- bias1, = rest
- if ctx.heuristic == -1:
- gelu_in = F.linear(x, weight1, bias1)
- output1 = F.gelu(gelu_in, approximate='tanh')
- else:
- output1, gelu_in = fused_dense_cuda.linear_gelu_forward(
- x.reshape(batch_dim, n), weight1, bias1, True, ctx.heuristic
- )
- grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
- output1 = output1.reshape(batch_dim, output1.shape[-1])
- gelu_in = gelu_in.reshape(batch_dim, gelu_in.shape[-1])
- if ctx.needs_input_grad[3]:
- grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(
- output1, grad_output, ctx.needs_input_grad[4]
- )
- else:
- grad_weight2 = None
- grad_bias2 = grad_output if ctx.needs_input_grad[4] else None
- if ctx.heuristic == -1:
- # grad_gelu = matmul_dgelu(grad_output, weight2, gelu_in)
- grad_output1 = F.linear(grad_output, weight2.t())
- with torch.jit.fuser('fuser2'):
- grad_gelu = gelu_bwd(grad_output1, gelu_in)
- if ctx.needs_input_grad[1]:
- grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_wgrad(
- x.reshape(batch_dim, n), grad_gelu, ctx.needs_input_grad[2]
- )
- else:
- grad_weight1 = None
- grad_bias1 = grad_gelu if ctx.needs_input_grad[2] else None
- else:
- # The cublasLt epilogue has to compute both gelu grad and bias grad, we can't
- # just compute gelu grad
- grad_gelu, grad_bias1 = fused_dense_cuda.bias_gelu_linear_dgrad_bgrad(
- weight2, grad_output, gelu_in, ctx.heuristic
- )
- if not ctx.needs_input_grad[2]:
- grad_bias1 = None
- if ctx.needs_input_grad[1]:
- grad_weight1 = F.linear(grad_gelu.t(), x.reshape(batch_dim, n).t())
- else:
- grad_weight1 = None
- if ctx.needs_input_grad[0]:
- if not ctx.return_residual:
- grad_input = F.linear(grad_gelu, weight1.t())
- else:
- grad_input = torch.addmm(grad_input.reshape(batch_dim, n), grad_gelu, weight1)
- grad_input = grad_input.reshape_as(x)
- else:
- grad_input = None
- return grad_input, grad_weight1, grad_bias1, grad_weight2, grad_bias2, None, None, None, None
- def fused_dense_gelu_dense_func(
- x: Tensor, weight1: Tensor, weight2: Tensor, bias1: Optional[Tensor] = None,
- bias2: Optional[Tensor] = None,
- save_gelu_in: bool = True, return_residual: bool = False,
- checkpoint_lvl: int = 0, heuristic: int = 0
- ):
- batch_dim = x.shape[:-1].numel()
- dtype_eligible = (x.dtype in [torch.float16, torch.bfloat16]
- or (x.dtype == torch.float32 and torch.is_autocast_enabled()))
- if (x.is_cuda and weight1.is_cuda and weight2.is_cuda and (bias1 is None or bias1.is_cuda)
- and (bias2 is None or bias2.is_cuda) and batch_dim <= 64 * 1024
- and dtype_eligible):
- return FusedDenseGeluDenseFunc.apply(
- x, weight1, bias1, weight2, bias2,
- save_gelu_in, return_residual, checkpoint_lvl, heuristic
- )
- else:
- gelu_in = F.linear(x, weight1, bias1)
- output1 = F.gelu(gelu_in, approximate='tanh')
- output2 = F.linear(output1, weight2, bias2)
- return output2 if not return_residual else (output2, x)
- class FusedDenseGeluDense(nn.Module):
- def __init__(self, in_features, hidden_features, out_features=None, bias1=True,
- bias2=True, return_residual=False, checkpoint_lvl=0, heuristic=0,
- device=None, dtype=None):
- """
- checkpoint_lvl (increasing lvl means slower but more memory saving):
- 0: no recomputation in the bwd
- 1: recompute gelu_out in the bwd
- 2: recompute gelu_in and gelu_out in the bwd
- heuristic:
- -1: don't fuse gemm + gelu (separate kernel)
- 0..4: use this heuristic for the algo section in the fused gemm + gelu
- For CUDA >= 11.8, you'd want heuristic=0 for both fp16 and bf16 for best perf.
- For CUDA <= 11.7, you'd want heuristic=1 for fp16 and heuristic=-1 for bf16.
- return_residual: whether to return the input x along with the output. This is for
- performance reason: for post-norm architecture, returning the input allows us
- to fuse the backward of nn.Linear with the residual connection.
- """
- assert checkpoint_lvl in [0, 1, 2]
- factory_kwargs = {'device': device, 'dtype': dtype}
- super().__init__()
- if out_features is None:
- out_features = in_features
- self.return_residual = return_residual
- self.checkpoint_lvl = checkpoint_lvl
- self.heuristic = heuristic
- self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1, **factory_kwargs)
- self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2, **factory_kwargs)
- def forward(self, x):
- return fused_dense_gelu_dense_func(
- x, self.fc1.weight, self.fc2.weight, self.fc1.bias, self.fc2.bias,
- save_gelu_in=self.training, return_residual=self.return_residual,
- checkpoint_lvl=self.checkpoint_lvl, heuristic=self.heuristic
- )
|