123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535 |
- # Copyright (c) 2022, Tri Dao.
- # This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation.
- # https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py
- # https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py
- # Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py
- import re
- import logging
- from functools import partial
- from collections.abc import Sequence
- from collections import OrderedDict
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from transformers import BertConfig
- from transformers.models.bert.modeling_bert import BaseModelOutputWithPoolingAndCrossAttentions
- from transformers.models.bert.modeling_bert import BertForPreTrainingOutput
- from einops import rearrange
- from flash_attn.modules.mha import MHA
- from flash_attn.modules.mlp import Mlp, FusedDenseGeluDense
- from flash_attn.modules.block import Block
- from flash_attn.modules.embedding import BertEmbeddings
- from flash_attn.bert_padding import unpad_input, pad_input
- from flash_attn.bert_padding import index_first_axis, index_first_axis_residual
- try:
- from flash_attn.ops.fused_dense import FusedDense
- except ImportError:
- FusedDense = None
- try:
- from flash_attn.ops.layer_norm import dropout_add_layer_norm, layer_norm
- except ImportError:
- dropout_add_layer_norm, layer_norm = None, None
- try:
- from flash_attn.losses.cross_entropy import CrossEntropyLoss
- except ImportError:
- CrossEntropyLoss = None
- logger = logging.getLogger(__name__)
- def create_mixer_cls(config, cross_attn=False, return_residual=False):
- use_flash_attn = getattr(config, 'use_flash_attn', False)
- fused_bias_fc = getattr(config, 'fused_bias_fc', False)
- mixer_cls = partial(MHA, num_heads=config.num_attention_heads, cross_attn=cross_attn,
- dropout=config.attention_probs_dropout_prob, causal=False,
- fused_bias_fc=fused_bias_fc, use_flash_attn=use_flash_attn,
- return_residual=return_residual)
- return mixer_cls
- def create_mlp_cls(config, layer_idx=None, return_residual=False):
- inner_dim = config.intermediate_size
- fused_dense_gelu_dense = getattr(config, 'fused_dense_gelu_dense', False)
- if fused_dense_gelu_dense:
- assert config.hidden_act in ['gelu_new', 'gelu_fast'], ('fused_dense_gelu_dense only '
- 'supports approximate gelu')
- if not fused_dense_gelu_dense:
- approximate = 'tanh' if config.hidden_act in ['gelu_new', 'gelu_fast'] else 'none'
- mlp_cls = partial(Mlp, hidden_features=inner_dim,
- activation=partial(F.gelu, approximate=approximate),
- return_residual=return_residual)
- else:
- if FusedDenseGeluDense is None:
- raise ImportError('fused_dense is not installed')
- mlp_checkpoint_lvl = getattr(config, 'mlp_checkpoint_lvl', 0)
- # mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer
- if isinstance(mlp_checkpoint_lvl, Sequence):
- assert layer_idx is not None
- mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx]
- mlp_cls = partial(FusedDenseGeluDense, hidden_features=inner_dim,
- checkpoint_lvl=mlp_checkpoint_lvl, return_residual=return_residual)
- return mlp_cls
- def create_block(config, layer_idx=None):
- last_layer_subset = getattr(config, 'last_layer_subset', False)
- cross_attn=last_layer_subset and layer_idx == config.num_hidden_layers - 1
- # TD [2022-12-19]: For cross attention (last layer), we actually want to return the
- # residual x_kv, not residual x. But it's annoying to change the API (and it only affects
- # one layer) so we just choose not to return residual in this case.
- return_residual = not cross_attn
- mixer_cls = create_mixer_cls(config, cross_attn, return_residual=return_residual)
- mlp_cls = create_mlp_cls(config, layer_idx, return_residual=return_residual)
- norm_cls = partial(nn.LayerNorm, eps=config.layer_norm_eps)
- block = Block(config.hidden_size, mixer_cls, mlp_cls, norm_cls=norm_cls,
- prenorm=False, resid_dropout=config.hidden_dropout_prob,
- fused_dropout_add_ln=getattr(config, 'fused_dropout_add_ln', False),
- return_residual=return_residual)
- return block
- # https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
- def _init_weights(module, initializer_range=0.02):
- if isinstance(module, nn.Linear):
- nn.init.normal_(module.weight, std=initializer_range)
- if module.bias is not None:
- nn.init.zeros_(module.bias)
- elif isinstance(module, nn.Embedding):
- nn.init.normal_(module.weight, std=initializer_range)
- if module.padding_idx is not None:
- nn.init.zeros_(module.weight[module.padding_idx])
- class BertEncoder(nn.Module):
- def __init__(self, config: BertConfig):
- super().__init__()
- self.use_flash_attn = getattr(config, 'use_flash_attn', False)
- self.layers = nn.ModuleList([create_block(config, layer_idx=i)
- for i in range(config.num_hidden_layers)])
- def forward(self, hidden_states, key_padding_mask=None, subset_mask=None):
- """If subset_mask is not None, we only want output for the subset of the sequence.
- This means that we only compute the last layer output for these tokens.
- subset_mask: (batch, seqlen), dtype=torch.bool
- """
- if key_padding_mask is None or not self.use_flash_attn:
- mixer_kwargs = ({'key_padding_mask': key_padding_mask}
- if key_padding_mask is not None else None)
- for layer in self.layers:
- hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
- if subset_mask is not None:
- hidden_states = hidden_states[subset_mask]
- else:
- batch, seqlen = hidden_states.shape[:2]
- hidden_states, indices, cu_seqlens, max_seqlen_in_batch = unpad_input(
- hidden_states, key_padding_mask
- )
- mixer_kwargs = {'cu_seqlens': cu_seqlens, 'max_seqlen': max_seqlen_in_batch}
- if subset_mask is None:
- for layer in self.layers:
- hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
- hidden_states = pad_input(hidden_states, indices, batch, seqlen)
- else:
- for layer in self.layers[:-1]:
- hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
- if key_padding_mask is not None:
- subset_idx = torch.nonzero(subset_mask[key_padding_mask], as_tuple=False).flatten()
- subset_seqlens = (subset_mask & key_padding_mask).sum(dim=-1, dtype=torch.int32)
- subset_cu_seqlens = F.pad(torch.cumsum(subset_seqlens, dim=0,
- dtype=torch.torch.int32), (1, 0))
- else:
- subset_idx = torch.nonzero(subset_mask, as_tuple=False).flatten()
- subset_seqlens = subset_mask.sum(dim=-1, dtype=torch.int32)
- subset_cu_seqlens = F.pad(torch.cumsum(subset_seqlens, dim=0,
- dtype=torch.torch.int32), (1, 0))
- hidden_states_subset, hidden_states = index_first_axis_residual(
- hidden_states, subset_idx
- )
- # It's ok to set max_seqlen_q to be much larger
- mixer_kwargs = {'x_kv': hidden_states,
- 'cu_seqlens': subset_cu_seqlens, 'max_seqlen': max_seqlen_in_batch,
- 'cu_seqlens_k': cu_seqlens, 'max_seqlen_k': max_seqlen_in_batch}
- hidden_states = self.layers[-1](hidden_states_subset, mixer_kwargs=mixer_kwargs)
- return hidden_states
- class BertPooler(nn.Module):
- def __init__(self, config):
- super().__init__()
- fused_bias_fc = getattr(config, 'fused_bias_fc', False)
- if fused_bias_fc and FusedDense is None:
- raise ImportError('fused_dense is not installed')
- linear_cls = nn.Linear if not fused_bias_fc else FusedDense
- self.dense = linear_cls(config.hidden_size, config.hidden_size)
- self.activation = nn.Tanh()
- def forward(self, hidden_states, pool=True):
- # We "pool" the model by simply taking the hidden state corresponding
- # to the first token.
- first_token_tensor = hidden_states[:, 0] if pool else hidden_states
- pooled_output = self.dense(first_token_tensor)
- pooled_output = self.activation(pooled_output)
- return pooled_output
- class BertPredictionHeadTransform(nn.Module):
- def __init__(self, config):
- super().__init__()
- fused_bias_fc = getattr(config, 'fused_bias_fc', False)
- if fused_bias_fc and FusedDense is None:
- raise ImportError('fused_dense is not installed')
- self.fused_dropout_add_ln = getattr(config, 'fused_dropout_add_ln', False)
- if self.fused_dropout_add_ln and layer_norm is None:
- raise ImportError('dropout_add_layer_norm is not installed')
- linear_cls = nn.Linear if not fused_bias_fc else FusedDense
- self.dense = linear_cls(config.hidden_size, config.hidden_size)
- approximate = 'tanh' if config.hidden_act in ['gelu_new', 'gelu_fast'] else 'none'
- self.transform_act_fn = nn.GELU(approximate=approximate)
- self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
- hidden_states = self.dense(hidden_states)
- hidden_states = self.transform_act_fn(hidden_states)
- if not self.fused_dropout_add_ln:
- hidden_states = self.layer_norm(hidden_states)
- else:
- hidden_states = layer_norm(hidden_states, self.layer_norm.weight, self.layer_norm.bias,
- self.layer_norm.eps)
- return hidden_states
- class BertLMPredictionHead(nn.Module):
- def __init__(self, config):
- super().__init__()
- fused_bias_fc = getattr(config, 'fused_bias_fc', False)
- if fused_bias_fc and FusedDense is None:
- raise ImportError('fused_dense is not installed')
- linear_cls = nn.Linear if not fused_bias_fc else FusedDense
- self.transform = BertPredictionHeadTransform(config)
- # The output weights are the same as the input embeddings, but there is
- # an output-only bias for each token.
- self.decoder = linear_cls(config.hidden_size, config.vocab_size, bias=True)
- def forward(self, hidden_states):
- hidden_states = self.transform(hidden_states)
- hidden_states = self.decoder(hidden_states)
- return hidden_states
- class BertPreTrainingHeads(nn.Module):
- def __init__(self, config):
- super().__init__()
- self.predictions = BertLMPredictionHead(config)
- self.seq_relationship = nn.Linear(config.hidden_size, 2)
- def forward(self, sequence_output, pooled_output):
- prediction_scores = self.predictions(sequence_output)
- seq_relationship_score = self.seq_relationship(pooled_output)
- return prediction_scores, seq_relationship_score
- class BertPreTrainedModel(nn.Module):
- """ An abstract class to handle weights initialization and
- a simple interface for dowloading and loading pretrained models.
- """
- def __init__(self, config, *inputs, **kwargs):
- super().__init__()
- if not isinstance(config, BertConfig):
- raise ValueError(
- "Parameter config in `{}(config)` should be an instance of class `BertConfig`. "
- "To create a model from a Google pretrained model use "
- "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
- self.__class__.__name__, self.__class__.__name__
- ))
- self.config = config
- @classmethod
- def from_pretrained(cls, model_name, config, *inputs, **kwargs):
- """
- Instantiate a BertPreTrainedModel from a pre-trained model file or a pytorch state dict.
- Download and cache the pre-trained model file if needed.
- Params:
- pretrained_model_name_or_path: either:
- - a path or url to a pretrained model archive containing:
- . `bert_config.json` a configuration file for the model
- . `pytorch_model.bin` a PyTorch dump of a BertForPretraining instance
- - a path or url to a pretrained model archive containing:
- . `bert_config.json` a configuration file for the model
- . `model.chkpt` a TensorFlow checkpoint
- *inputs, **kwargs: additional input for the specific Bert class
- (ex: num_labels for BertForSequenceClassification)
- """
- # Instantiate model.
- model = cls(config, *inputs, **kwargs)
- load_return = model.load_state_dict(remap_state_dict(state_dict_from_pretrained(model_name),
- config), strict=False)
- logger.info(load_return)
- return model
- class BertModel(BertPreTrainedModel):
- def __init__(self, config: BertConfig, add_pooling_layer=True):
- super().__init__(config)
- self.pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
- if config.vocab_size % self.pad_vocab_size_multiple != 0:
- config.vocab_size += (self.pad_vocab_size_multiple
- - (config.vocab_size % self.pad_vocab_size_multiple))
- self.fused_dropout_add_ln = getattr(config, 'fused_dropout_add_ln', False)
- if self.fused_dropout_add_ln and dropout_add_layer_norm is None:
- raise ImportError('dropout_add_layer_norm is not installed')
- assert config.position_embedding_type == 'absolute'
- assert config.hidden_act in ['gelu', 'gelu_new', 'gelu_fast']
- self.embeddings = BertEmbeddings(config.hidden_size, config.vocab_size,
- config.max_position_embeddings, config.type_vocab_size,
- padding_idx=config.pad_token_id)
- self.emb_drop = nn.Dropout(config.hidden_dropout_prob)
- self.emb_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.encoder = BertEncoder(config)
- self.pooler = BertPooler(config) if add_pooling_layer else None
- self.apply(partial(_init_weights, initializer_range=config.initializer_range))
- def forward(self, input_ids, position_ids=None, token_type_ids=None, attention_mask=None,
- masked_tokens_mask=None):
- """If masked_tokens_mask is not None (i.e. last_layer_subset == True in BertForPreTraining),
- we only want the output for the masked tokens. This means that we only compute the last
- layer output for these tokens.
- masked_tokens_mask: (batch, seqlen), dtype=torch.bool
- """
- hidden_states = self.embeddings(input_ids, position_ids=position_ids,
- token_type_ids=token_type_ids)
- # TD [2022-12:18]: Don't need to force residual in fp32
- if not self.fused_dropout_add_ln:
- hidden_states = self.emb_drop(hidden_states)
- hidden_states = self.emb_ln(hidden_states)
- else:
- hidden_states = dropout_add_layer_norm(
- hidden_states, None, self.emb_ln.weight, self.emb_ln.bias,
- self.emb_drop.p if self.training else 0.0, self.emb_ln.eps, prenorm=False,
- )
- if masked_tokens_mask is not None:
- batch_size, seqlen = input_ids.shape[:2]
- # We also need the first column for the CLS token
- first_col_mask = torch.zeros(batch_size, seqlen, dtype=torch.bool,
- device=input_ids.device)
- first_col_mask[:, 0] = True
- subset_mask = masked_tokens_mask | first_col_mask
- else:
- subset_mask = None
- sequence_output = self.encoder(hidden_states, key_padding_mask=attention_mask,
- subset_mask=subset_mask)
- if masked_tokens_mask is None:
- pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
- else:
- # TD [2022-03-01]: the indexing here is very tricky.
- if attention_mask is not None:
- subset_idx = subset_mask[attention_mask]
- pool_input = sequence_output[first_col_mask[attention_mask][subset_idx]]
- sequence_output = sequence_output[masked_tokens_mask[attention_mask][subset_idx]]
- else:
- pool_input = sequence_output[first_col_mask[subset_mask]]
- sequence_output = sequence_output[masked_tokens_mask[subset_mask]]
- pooled_output = (self.pooler(pool_input, pool=False)
- if self.pooler is not None else None)
- return BaseModelOutputWithPoolingAndCrossAttentions(
- last_hidden_state=sequence_output,
- pooler_output=pooled_output,
- )
- class BertForPreTraining(BertPreTrainedModel):
- def __init__(self, config: BertConfig):
- super().__init__(config)
- # If dense_seq_output, we only need to pass the hidden states for the masked out tokens
- # (around 15%) to the classifier heads.
- self.dense_seq_output = getattr(config, 'dense_seq_output', False)
- # If last_layer_subset, we only need the compute the last layer for a subset of tokens
- # (e.g., the tokens we need to compute the masked LM loss and the next-sentence prediction).
- self.last_layer_subset = getattr(config, 'last_layer_subset', False)
- if self.last_layer_subset:
- assert self.dense_seq_output, 'last_layer_subset requires dense_seq_output'
- use_xentropy = getattr(config, 'use_xentropy', False)
- if use_xentropy and CrossEntropyLoss is None:
- raise ImportError('xentropy_cuda is not installed')
- loss_cls = (nn.CrossEntropyLoss if not use_xentropy
- else partial(CrossEntropyLoss, inplace_backward=True))
- self.bert = BertModel(config)
- self.cls = BertPreTrainingHeads(config)
- self.mlm_loss = loss_cls(ignore_index=0)
- self.nsp_loss = loss_cls(ignore_index=-1)
- # Initialize weights and apply final processing
- self.apply(partial(_init_weights, initializer_range=config.initializer_range))
- self.tie_weights()
- def tie_weights(self):
- self.cls.predictions.decoder.weight = self.bert.embeddings.word_embeddings.weight
- def forward(self, input_ids, position_ids=None, token_type_ids=None, attention_mask=None,
- labels=None, next_sentence_label=None):
- """
- If labels are provided, they must be 0 for masked out tokens (as specified in the attention
- mask).
- Outputs:
- if `labels` and `next_sentence_label` are not `None`:
- Outputs the total_loss which is the sum of the masked language modeling loss and the next
- sentence classification loss.
- if `labels` or `next_sentence_label` is `None`:
- Outputs a tuple comprising
- - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
- - the next sentence classification logits of shape [batch_size, 2].
- """
- masked_tokens_mask = labels > 0 if (self.last_layer_subset and labels is not None) else None
- outputs = self.bert(
- input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
- attention_mask=attention_mask.bool() if attention_mask is not None else None,
- masked_tokens_mask=masked_tokens_mask
- )
- sequence_output, pooled_output = outputs.last_hidden_state, outputs.pooler_output
- if self.dense_seq_output and labels is not None:
- masked_token_idx = torch.nonzero(labels.flatten() > 0, as_tuple=False).flatten()
- if not self.last_layer_subset:
- sequence_output = index_first_axis(rearrange(sequence_output, 'b s d -> (b s) d'),
- masked_token_idx)
- prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
- total_loss = None
- if labels is not None and next_sentence_label is not None:
- if self.dense_seq_output and labels is not None: # prediction_scores are already flattened
- masked_lm_loss = self.mlm_loss(prediction_scores,
- labels.flatten()[masked_token_idx])
- else:
- masked_lm_loss = self.mlm_loss(rearrange(prediction_scores, '... v -> (...) v'),
- rearrange(labels, '... -> (...)'))
- next_sentence_loss = self.nsp_loss(rearrange(seq_relationship_score, '... t -> (...) t'),
- rearrange(next_sentence_label, '... -> (...)'))
- total_loss = masked_lm_loss.float() + next_sentence_loss.float()
- return BertForPreTrainingOutput(
- loss=total_loss,
- prediction_logits=prediction_scores,
- seq_relationship_logits=seq_relationship_score,
- )
- def state_dict_from_pretrained(model_name):
- from transformers.utils import WEIGHTS_NAME
- from transformers.utils.hub import cached_file
- return torch.load(cached_file(model_name, WEIGHTS_NAME))
- def remap_state_dict(state_dict, config):
- # LayerNorm
- def key_mapping_ln_gamma_beta(key):
- key = re.sub(r'LayerNorm.gamma$', 'LayerNorm.weight', key)
- key = re.sub(r'LayerNorm.beta$', 'LayerNorm.bias', key)
- return key
- state_dict = OrderedDict((key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items())
- # Layers
- def key_mapping_layers(key):
- return re.sub(r'^bert.encoder.layer.', 'bert.encoder.layers.', key)
- state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
- # LayerNorm
- def key_mapping_ln(key):
- key = re.sub(r'^bert.embeddings.LayerNorm.', 'bert.emb_ln.', key)
- key = re.sub(r'^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)',
- r'bert.encoder.layers.\1.norm1.\2', key)
- key = re.sub(r'^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)',
- r'bert.encoder.layers.\1.norm2.\2', key)
- key = re.sub(r'^cls.predictions.transform.LayerNorm.(weight|bias)',
- r'cls.predictions.transform.layer_norm.\1', key)
- return key
- state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
- # MLP
- def key_mapping_mlp(key):
- key = re.sub(r'^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)',
- r'bert.encoder.layers.\1.mlp.fc1.\2', key)
- key = re.sub(r'^bert.encoder.layers.(\d+).output.dense.(weight|bias)',
- r'bert.encoder.layers.\1.mlp.fc2.\2', key)
- return key
- state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
- # Attention
- last_layer_subset = getattr(config, 'last_layer_subset', False)
- for d in range(config.num_hidden_layers):
- Wq = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.query.weight')
- Wk = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.key.weight')
- Wv = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.value.weight')
- bq = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.query.bias')
- bk = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.key.bias')
- bv = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.value.bias')
- if not (last_layer_subset and d == config.num_hidden_layers - 1):
- state_dict[f'bert.encoder.layers.{d}.mixer.Wqkv.weight'] = torch.cat(
- [Wq, Wk, Wv], dim=0
- )
- state_dict[f'bert.encoder.layers.{d}.mixer.Wqkv.bias'] = torch.cat(
- [bq, bk, bv], dim=0
- )
- else:
- state_dict[f'bert.encoder.layers.{d}.mixer.Wq.weight'] = Wq
- state_dict[f'bert.encoder.layers.{d}.mixer.Wkv.weight'] = torch.cat(
- [Wk, Wv], dim=0
- )
- state_dict[f'bert.encoder.layers.{d}.mixer.Wq.bias'] = bq
- state_dict[f'bert.encoder.layers.{d}.mixer.Wkv.bias'] = torch.cat(
- [bk, bv], dim=0
- )
- def key_mapping_attn(key):
- return re.sub(r'^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)',
- r'bert.encoder.layers.\1.mixer.out_proj.\2', key)
- state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
- def key_mapping_decoder_bias(key):
- return re.sub(r'^cls.predictions.bias', 'cls.predictions.decoder.bias', key)
- state_dict = OrderedDict((key_mapping_decoder_bias(k), v) for k, v in state_dict.items())
- # Word embedding
- pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
- if pad_vocab_size_multiple > 1:
- word_embeddings = state_dict['bert.embeddings.word_embeddings.weight']
- state_dict['bert.embeddings.word_embeddings.weight'] = F.pad(
- word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0])
- )
- decoder_weight = state_dict['cls.predictions.decoder.weight']
- state_dict['cls.predictions.decoder.weight'] = F.pad(
- decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0])
- )
- # If the vocab was padded, we want to set the decoder bias for those padded indices to be
- # strongly negative (i.e. the decoder shouldn't predict those indices).
- # TD [2022-05-09]: I don't think it affects the MLPerf training.
- decoder_bias = state_dict['cls.predictions.decoder.bias']
- state_dict['cls.predictions.decoder.bias'] = F.pad(
- decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0
- )
- return state_dict
|