123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180 |
- # Install the newest triton version with
- # pip install "git+https://github.com/openai/triton.git#egg=triton&subdirectory=python"
- import pickle
- import math
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from einops import rearrange, repeat
- from flash_attn.utils.benchmark import benchmark_all, benchmark_forward, benchmark_backward
- from flash_attn.utils.benchmark import benchmark_fwd_bwd, benchmark_combined
- from flash_attn import flash_attn_qkvpacked_func
- try:
- from triton.ops.flash_attention import attention as attention_triton
- except ImportError:
- attention_triton = None
- try:
- import xformers.ops as xops
- except ImportError:
- xops = None
- def flops(batch, seqlen, headdim, nheads, causal, mode="fwd"):
- assert mode in ["fwd", "bwd", "fwd_bwd"]
- f = 4 * batch * seqlen**2 * nheads * headdim // (2 if causal else 1)
- return f if mode == "fwd" else (2.5 * f if mode == "bwd" else 3.5 * f)
- def efficiency(flop, time):
- return (flop / time / 10**12) if not math.isnan(time) else 0.0
- def attention_pytorch(qkv, dropout_p=0.0, causal=True):
- """
- Arguments:
- qkv: (batch_size, seqlen, 3, nheads, head_dim)
- dropout_p: float
- Output:
- output: (batch_size, seqlen, nheads, head_dim)
- """
- batch_size, seqlen, _, nheads, d = qkv.shape
- q, k, v = qkv.unbind(dim=2)
- q = rearrange(q, 'b t h d -> (b h) t d')
- k = rearrange(k, 'b s h d -> (b h) d s')
- softmax_scale = 1.0 / math.sqrt(d)
- # Preallocate attn_weights for `baddbmm`
- scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device)
- scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale),
- '(b h) t s -> b h t s', h=nheads)
- if causal:
- # "triu_tril_cuda_template" not implemented for 'BFloat16'
- # So we have to construct the mask in float
- causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
- # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
- scores = scores + causal_mask.to(dtype=scores.dtype)
- attention = torch.softmax(scores, dim=-1)
- attention_drop = F.dropout(attention, dropout_p)
- output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
- return output.to(dtype=qkv.dtype)
- def time_fwd_bwd(func, *args, **kwargs):
- time_f, time_b = benchmark_fwd_bwd(func, *args, **kwargs)
- return time_f[1].mean, time_b[1].mean
- repeats = 30
- device = 'cuda'
- dtype = torch.float16
- bs_seqlen_vals = [(32, 512), (16, 1024), (8, 2048), (4, 4096), (2, 8192), (1, 16384)]
- causal_vals = [False, True]
- headdim_vals = [64, 128]
- dim = 2048
- dropout_p = 0.0
- methods = (["Flash2", "Pytorch"]
- + (["Triton"] if attention_triton is not None else [])
- + (["xformers.c"] if xops is not None else [])
- + (["xformers.f"] if xops is not None else []))
- time_f = {}
- time_b = {}
- time_f_b = {}
- speed_f = {}
- speed_b = {}
- speed_f_b = {}
- for causal in causal_vals:
- for headdim in headdim_vals:
- for batch_size, seqlen in bs_seqlen_vals:
- config = (causal, headdim, batch_size, seqlen)
- nheads = dim // headdim
- qkv = torch.randn(batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype,
- requires_grad=True)
- f, b = time_fwd_bwd(
- flash_attn_qkvpacked_func, qkv, dropout_p, causal=causal, repeats=repeats, verbose=False
- )
- time_f[config, "Flash2"] = f
- time_b[config, "Flash2"] = b
- try:
- qkv = qkv.detach().requires_grad_(True)
- f, b = time_fwd_bwd(
- attention_pytorch, qkv, dropout_p, causal=causal, repeats=repeats, verbose=False
- )
- except: # Skip if OOM
- f, b = float('nan'), float('nan')
- time_f[config, "Pytorch"] = f
- time_b[config, "Pytorch"] = b
- if attention_triton is not None:
- q, k, v = [torch.randn(batch_size, nheads, seqlen, headdim, device=device, dtype=dtype,
- requires_grad=True) for _ in range(3)]
- # Try both values of sequence_parallel and pick the faster one
- try:
- f, b = time_fwd_bwd(
- attention_triton, q, k, v, causal, headdim**(-0.5),
- False, repeats=repeats, verbose=False
- )
- except:
- f, b = float('nan'), float('inf')
- try:
- _, b0 = time_fwd_bwd(
- attention_triton, q, k, v, causal, headdim**(-0.5),
- True, repeats=repeats, verbose=False
- )
- except:
- b0 = float('inf')
- time_f[config, "Triton"] = f
- time_b[config, "Triton"] = min(b, b0) if min(b, b0) < float('inf') else float('nan')
- if xops is not None:
- q, k, v = [torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype,
- requires_grad=True) for _ in range(3)]
- f, b = time_fwd_bwd(
- xops.memory_efficient_attention, q, k, v,
- attn_bias=xops.LowerTriangularMask() if causal else None,
- op=(xops.fmha.cutlass.FwOp, xops.fmha.cutlass.BwOp)
- )
- time_f[config, "xformers.c"] = f
- time_b[config, "xformers.c"] = b
- if xops is not None:
- q, k, v = [torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype,
- requires_grad=True) for _ in range(3)]
- f, b = time_fwd_bwd(
- xops.memory_efficient_attention, q, k, v,
- attn_bias=xops.LowerTriangularMask() if causal else None,
- op=(xops.fmha.flash.FwOp, xops.fmha.flash.BwOp)
- )
- time_f[config, "xformers.f"] = f
- time_b[config, "xformers.f"] = b
- print(f"### causal={causal}, headdim={headdim}, batch_size={batch_size}, seqlen={seqlen} ###")
- for method in methods:
- time_f_b[config, method] = time_f[config, method] + time_b[config, method]
- speed_f[config, method] = efficiency(
- flops(batch_size, seqlen, headdim, nheads, causal, mode="fwd"),
- time_f[config, method]
- )
- speed_b[config, method] = efficiency(
- flops(batch_size, seqlen, headdim, nheads, causal, mode="bwd"),
- time_b[config, method]
- )
- speed_f_b[config, method] = efficiency(
- flops(batch_size, seqlen, headdim, nheads, causal, mode="fwd_bwd"),
- time_f_b[config, method]
- )
- print(
- f"{method} fwd: {speed_f[config, method]:.2f} TFLOPs/s, "
- f"bwd: {speed_b[config, method]:.2f} TFLOPs/s, "
- f"fwd + bwd: {speed_f_b[config, method]:.2f} TFLOPs/s"
- )
- # with open('flash2_attn_time.plk', 'wb') as fp:
- # pickle.dump((speed_f, speed_b, speed_f_b), fp, protocol=pickle.HIGHEST_PROTOCOL)
|