123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225 |
- from functools import partial
- import math
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from einops import rearrange, repeat
- # from flash_attn.utils.benchmark import benchmark_forward, benchmark_backward, benchmark_combined, benchmark_all, benchmark_fwd_bwd, pytorch_profiler
- from flash_attn.utils.benchmark import benchmark_forward, benchmark_backward, benchmark_combined, benchmark_all, benchmark_fwd_bwd, pytorch_profiler
- from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func
- # # from flash_attn.triton.fused_attention import attention as attention
- # from flash_attn.flash_attn_triton import flash_attn_qkvpacked_func
- # from flash_attn.flash_attn_triton_og import attention as attention_og
- # from triton.ops.flash_attention import attention as attention_triton
- from flash_attn import flash_attn_qkvpacked_func, flash_attn_kvpacked_func
- try:
- from flash_attn.fused_softmax import scaled_upper_triang_masked_softmax
- except ImportError:
- scaled_upper_triang_masked_softmax = None
- def attention_pytorch(qkv, dropout_p=0.0, causal=True):
- """
- Arguments:
- qkv: (batch_size, seqlen, 3, nheads, head_dim)
- dropout_p: float
- Output:
- output: (batch_size, seqlen, nheads, head_dim)
- """
- batch_size, seqlen, _, nheads, d = qkv.shape
- q, k, v = qkv.unbind(dim=2)
- q = rearrange(q, 'b t h d -> (b h) t d')
- k = rearrange(k, 'b s h d -> (b h) d s')
- softmax_scale = 1.0 / math.sqrt(d)
- # Preallocate attn_weights for `baddbmm`
- scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device)
- scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale),
- '(b h) t s -> b h t s', h=nheads)
- if causal:
- # "triu_tril_cuda_template" not implemented for 'BFloat16'
- # So we have to construct the mask in float
- causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
- # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
- scores = scores + causal_mask.to(dtype=scores.dtype)
- attention = torch.softmax(scores, dim=-1)
- attention_drop = F.dropout(attention, dropout_p)
- output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
- return output.to(dtype=qkv.dtype)
- def attention_megatron(qkv):
- """
- Arguments:
- qkv: (batch_size, seqlen, 3, nheads, head_dim)
- Output:
- output: (batch_size, seqlen, nheads, head_dim)
- """
- batch_size, seqlen, _, nheads, d = qkv.shape
- q, k, v = qkv.unbind(dim=2)
- q = rearrange(q, 'b t h d -> (b h) t d')
- k = rearrange(k, 'b s h d -> (b h) d s')
- softmax_scale = 1.0 / math.sqrt(d)
- # Preallocate attn_weights for `baddbmm`
- scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device)
- scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale),
- '(b h) t s -> b h t s', h=nheads)
- attention = scaled_upper_triang_masked_softmax(scores, None, scale=1.0)
- output = torch.einsum('bhts,bshd->bthd', attention, v)
- return output.to(dtype=qkv.dtype)
- torch.manual_seed(0)
- repeats = 30
- batch_size = 8
- seqlen = 2048
- nheads = 12
- headdim = 128
- # nheads = 24
- # headdim = 64
- # batch_size = 64
- # seqlen = 512
- # nheads = 8
- # headdim = 128
- dropout_p = 0.0
- causal = True
- dtype = torch.float16
- device = 'cuda'
- qkv = torch.randn(batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype,
- requires_grad=True)
- cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
- device=qkv.device)
- qkv_unpad = rearrange(qkv, 'b s ... -> (b s) ...').detach().requires_grad_(True)
- # benchmark_all(flash_attn_varlen_qkvpacked_func, qkv_unpad,
- # cu_seqlens, seqlen, dropout_p, causal=causal, repeats=repeats, desc='FlashAttention')
- # pytorch_profiler(flash_attn_varlen_qkvpacked_func, qkv_unpad,
- # cu_seqlens, seqlen, dropout_p, causal=causal, backward=True)
- benchmark_forward(flash_attn_qkvpacked_func, qkv, dropout_p, causal=causal, repeats=repeats, desc='Fav2')
- pytorch_profiler(flash_attn_qkvpacked_func, qkv, dropout_p, causal=causal, backward=False)
- # for dropout_p in [0.1, 0.0]:
- # for causal in [False, True]:
- # print(f"### {dropout_p = }, {causal = } ###")
- # pytorch_profiler(fav2_qkvpacked_func, qkv, dropout_p, causal=causal, backward=True)
- # nheads_k = 2
- # q = torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype, requires_grad=True)
- # kv = torch.randn(batch_size, seqlen, 2, nheads_k, headdim, device=device, dtype=dtype,
- # requires_grad=True)
- # if fav2_kvpacked_func is not None:
- # benchmark_all(fav2_kvpacked_func, q, kv, dropout_p, causal=causal, repeats=repeats, desc='Fav2')
- # pytorch_profiler(fav2_kvpacked_func, q, kv, dropout_p, causal=causal, backward=True)
- # dropout_p = 0.0
- # causal = False
- # benchmark_all(attention_pytorch, qkv, dropout_p, causal=causal,
- # repeats=repeats, desc='PyTorch Attention')
- # benchmark_all(flash_attn_qkvpacked_func, qkv, None, causal, repeats=repeats, desc='FlashAttention Triton')
- # pytorch_profiler(flash_attn_qkvpacked_func, qkv, None, causal, backward=True)
- # q, k, v = [torch.randn(batch_size, nheads, seqlen, headdim, device=device, dtype=dtype,
- # requires_grad=True) for _ in range(3)]
- # benchmark_all(attention_og, q, k, v, 1.0, repeats=repeats, desc='FlashAttention Triton OG')
- # # pytorch_profiler(attention, q, k, v, 1.0, backward=True)
- # if scaled_upper_triang_masked_softmax is not None:
- # benchmark_all(attention_megatron, qkv, repeats=repeats, desc='Megatron Attention')
- # from src.ops.fftconv import fftconv_func
- # dim = nheads * headdim
- # u = torch.randn(batch_size, dim, seqlen, device=device, dtype=dtype, requires_grad=True)
- # k = torch.randn(dim, seqlen, device=device, requires_grad=True)
- # D = torch.randn(dim, device=device, requires_grad=True)
- # benchmark_all(fftconv_func, u, k, D, repeats=repeats, desc='FFTConv')
- # pytorch_profiler(fftconv_func, u, k, D, backward=True)
- # pytorch_profiler(torch.fft.rfft, u.float())
- flops = 4 * batch_size * seqlen ** 2 * nheads * headdim
- ideal_a100_time = flops / 312 / 1e9
- print(f"Ideal A100 fwd time: {ideal_a100_time:.3f}ms, bwd time: {ideal_a100_time * 2.5:.3f}ms")
- exit(0)
- def time_fwd_bwd(func, *args, **kwargs):
- time_f, time_b = benchmark_fwd_bwd(func, *args, **kwargs)
- return time_f[1].mean, time_b[1].mean
- bs_seqlen_vals = [(32, 512), (16, 1024), (8, 2048), (4, 4096), (2, 8192), (1, 16384)]
- causal_vals = [False, True]
- headdim_vals = [64, 128]
- dim = 2048
- dropout_p = 0.0
- time_f = {}
- time_b = {}
- for causal in causal_vals:
- for headdim in headdim_vals:
- for batch_size, seqlen in bs_seqlen_vals:
- nheads = dim // headdim
- qkv = torch.randn(batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype,
- requires_grad=True)
- cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
- device=qkv.device)
- qkv_unpad = rearrange(qkv, 'b s ... -> (b s) ...').detach().requires_grad_(True)
- f, b = time_fwd_bwd(
- flash_attn_varlen_qkvpacked_func, qkv_unpad, cu_seqlens, seqlen, dropout_p,
- causal=causal, repeats=repeats, verbose=False
- )
- time_f[(causal, headdim, batch_size, seqlen), "Flash"] = f
- time_b[(causal, headdim, batch_size, seqlen), "Flash"] = b
- qkv = qkv.detach().requires_grad_(True)
- f, b = time_fwd_bwd(
- fav2_qkvpacked_func, qkv, dropout_p, causal=causal, repeats=repeats, verbose=False
- )
- time_f[(causal, headdim, batch_size, seqlen), "Flash2"] = f
- time_b[(causal, headdim, batch_size, seqlen), "Flash2"] = b
- # q, k, v = [torch.randn(batch_size, nheads, seqlen, headdim, device=device, dtype=dtype,
- # requires_grad=True) for _ in range(3)]
- # # Try both values of sequence_parallel and pick the faster one
- # f, b = time_fwd_bwd(
- # attention_triton, q, k, v, causal, headdim**(-0.5),
- # False, repeats=repeats, verbose=False
- # )
- # _, b0 = time_fwd_bwd(
- # attention_triton, q, k, v, causal, headdim**(-0.5),
- # True, repeats=repeats, verbose=False
- # )
- # time_f[(causal, headdim, batch_size, seqlen), "Triton"] = f
- # time_b[(causal, headdim, batch_size, seqlen), "Triton"] = min(b, b0)
- if seqlen <= 8 * 1024:
- qkv = qkv.detach().requires_grad_(True)
- f, b = time_fwd_bwd(
- attention_pytorch, qkv, dropout_p, causal=causal, repeats=repeats, verbose=False
- )
- else:
- f, b = float('nan'), float('nan')
- time_f[(causal, headdim, batch_size, seqlen), "Pytorch"] = f
- time_b[(causal, headdim, batch_size, seqlen), "Pytorch"] = b
- # q, k, v = [torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype,
- # requires_grad=True) for _ in range(3)]
- # import xformers.ops as xops
- # f, b = time_fwd_bwd(
- # xops.memory_efficient_attention, q, k, v,
- # attn_bias=xops.LowerTriangularMask() if causal else None,
- # op=(xops.fmha.cutlass.FwOp, xops.fmha.cutlass.BwOp)
- # )
- # time_f[(causal, headdim, batch_size, seqlen), "xformers"] = f
- # time_b[(causal, headdim, batch_size, seqlen), "xformers"] = b
- import pickle
- with open('flash2_attn_time_h100.plk', 'wb') as fp:
- pickle.dump((time_f, time_b), fp, protocol=pickle.HIGHEST_PROTOCOL)
|