123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245 |
- /******************************************************************************
- * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
- ******************************************************************************/
- #pragma once
- #include "cute/tensor.hpp"
- #include "cutlass/cluster_launch.hpp"
- #include "static_switch.h"
- #include "flash.h"
- #include "flash_bwd_preprocess_kernel.h"
- #include "flash_bwd_kernel.h"
- #include "kernel_traits.h"
- #include "utils.h"
- template<bool Clear_dQaccum=true, typename Kernel_traits>
- __global__ void flash_bwd_dot_do_o_kernel(const Flash_bwd_params params) {
- flash::compute_dot_do_o<Clear_dQaccum, Kernel_traits>(params);
- }
- // template<typename Kernel_traits>
- // __global__ void flash_bwd_convert_dq_kernel(const Flash_bwd_params params, const int nsplits) {
- // flash::convert_dQ<Kernel_traits>(params, nsplits);
- // }
- template<typename Kernel_traits>
- __global__ void flash_bwd_convert_dkv_kernel(const Flash_bwd_params params) {
- flash::convert_dKV<Kernel_traits>(params);
- }
- template<typename Kernel_traits, bool Is_causal>
- void run_flash_bwd(Flash_bwd_params ¶ms, cudaStream_t stream) {
- int num_m_block = cute::ceil_div(params.seqlen_q, Kernel_traits::kBlockM);
- dim3 grid_m(num_m_block, params.b, params.h);
- flash_bwd_dot_do_o_kernel<true, Kernel_traits><<<grid_m, Kernel_traits::kNThreadsNonWS, 0, stream>>>(params);
- // If we use both TMA_STORE (for n_block=0) and TMA_REDUCE_ADD (for n_block>0), we don't need to clear dQaccum
- // flash_bwd_dot_do_o_kernel<false, Kernel_traits><<<grid_m, Kernel_traits::kNThreadsNonWS, 0, stream>>>(params);
- CHECK_CUDA_KERNEL_LAUNCH();
- using Element = typename Kernel_traits::Element;
- using ElementAccum = typename Kernel_traits::ElementAccum;
- using TileShape_MNK = typename Kernel_traits::TileShape_MNK;
- using ClusterShape = typename Kernel_traits::ClusterShape_MNK;
- Tensor mQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.q_ptr)),
- make_shape(params.seqlen_q, params.d, params.h, params.b),
- make_stride(params.q_row_stride, _1{}, params.q_head_stride, params.q_batch_stride));
- auto tma_load_Q = make_tma_copy(
- typename Kernel_traits::GmemTiledCopyQdO{},
- mQ,
- typename Kernel_traits::SmemLayoutQ{}(_, _, _0{}),
- // typename Kernel_traits::SmemLayoutQ{},
- select<0, 2>(TileShape_MNK{}),
- size<1>(ClusterShape{})); // mcast along N mode for this M load, if any
- Tensor mdO = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.do_ptr)),
- make_shape(params.seqlen_q, params.d, params.h, params.b),
- make_stride(params.do_row_stride, _1{}, params.do_head_stride, params.do_batch_stride));
- auto tma_load_dO = make_tma_copy(
- typename Kernel_traits::GmemTiledCopyQdO{},
- mdO,
- typename Kernel_traits::SmemLayoutdO{}(_, _, _0{}),
- // typename Kernel_traits::SmemLayoutdO{},
- select<0, 2>(TileShape_MNK{}),
- size<1>(ClusterShape{})); // mcast along N mode for this M load, if any
- Tensor mK = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.k_ptr)),
- make_shape(params.seqlen_k, params.d, params.h, params.b),
- make_stride(params.k_row_stride, _1{}, params.k_head_stride, params.k_batch_stride));
- auto tma_load_K = make_tma_copy(
- typename Kernel_traits::GmemTiledCopyKV{},
- mK,
- typename Kernel_traits::SmemLayoutK{},
- // typename Kernel_traits::SmemLayoutK{}(_, _, _0{}),
- select<1, 2>(TileShape_MNK{}),
- _1{}); // no mcast for K
- Tensor mV = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.v_ptr)),
- make_shape(params.seqlen_k, params.d, params.h, params.b),
- make_stride(params.v_row_stride, _1{}, params.v_head_stride, params.v_batch_stride));
- auto tma_load_V = make_tma_copy(
- typename Kernel_traits::GmemTiledCopyKV{},
- mV,
- typename Kernel_traits::SmemLayoutV{},
- // typename Kernel_traits::SmemLayoutV{}(_, _, _0{}),
- select<1, 2>(TileShape_MNK{}),
- _1{}); // no mcast for V
- Tensor mdK = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.dk_ptr)),
- make_shape(params.seqlen_k, params.d, params.h, params.b),
- make_stride(params.dk_row_stride, _1{}, params.dk_head_stride, params.dk_batch_stride));
- auto tma_store_dK = make_tma_copy(
- typename Kernel_traits::GmemTiledCopydKV{},
- mdK,
- typename Kernel_traits::SmemLayoutdK{},
- select<1, 2>(TileShape_MNK{}),
- _1{}); // no mcast for output
- Tensor mdV = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.dv_ptr)),
- make_shape(params.seqlen_k, params.d, params.h, params.b),
- make_stride(params.dv_row_stride, _1{}, params.dv_head_stride, params.dv_batch_stride));
- auto tma_store_dV = make_tma_copy(
- typename Kernel_traits::GmemTiledCopydKV{},
- mdV,
- typename Kernel_traits::SmemLayoutdV{},
- select<1, 2>(TileShape_MNK{}),
- _1{}); // no mcast for output
- Tensor mdQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element*>(params.dq_ptr)),
- make_shape(params.seqlen_q, params.d, params.h, params.b),
- make_stride(params.dq_row_stride, _1{}, params.dq_head_stride, params.dq_batch_stride));
- Tensor mdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum*>(params.dq_accum_ptr)),
- make_shape(params.seqlen_q, params.d, params.h, params.b),
- make_stride(params.d * params.h, _1{}, params.d, params.d * params.h * params.seqlen_q_rounded));
- auto tma_store_dQaccum = make_tma_copy(
- // typename Kernel_traits::GmemTiledCopydKV{},
- typename cute::SM90_TMA_STORE{},
- // mdQ,
- mdQaccum,
- // typename Kernel_traits::SmemLayoutdQTMA{},
- typename Kernel_traits::SmemLayoutdQaccTMA{},
- select<0, 2>(TileShape_MNK{}),
- _1{}); // no mcast for output
- auto tma_reduce_add_dQaccum = make_tma_copy(
- // typename Kernel_traits::GmemTiledCopydKV{},
- typename cute::SM90_TMA_REDUCE_ADD{},
- // mdQ,
- mdQaccum,
- // typename Kernel_traits::SmemLayoutdQTMA{},
- typename Kernel_traits::SmemLayoutdQaccTMA{},
- select<0, 2>(TileShape_MNK{}),
- _1{}); // no mcast for output
- // print(typename Kernel_traits::SmemLayoutVt{}); printf("\n"); print(typename Kernel_traits::SmemLayoutVt_tmp{});
- // print(typename Kernel_traits::TiledMmaSdP{}); printf("\n");
- // print(typename Kernel_traits::TiledMmadKV{}); printf("\n");
- // print(typename Kernel_traits::TiledMmadQ{}); printf("\n");
- // print(typename Kernel_traits::SmemLayoutAtomK{}); printf("\n");
- // print(typename Kernel_traits::SmemLayoutK{}); printf("\n");
- // print(typename Kernel_traits::SmemLayoutKt{}); printf("\n");
- // Get the ptr to kernel function.
- void *kernel;
- if constexpr (!Kernel_traits::Is_WS) {
- kernel = (void *)flash::compute_dqkv<Kernel_traits, Is_causal, decltype(tma_load_Q), decltype(tma_load_dO),
- decltype(tma_load_K), decltype(tma_load_V), decltype(tma_store_dK), decltype(tma_store_dV)>;
- } else {
- kernel = (void *)flash::compute_dqkv_ws<Kernel_traits, Is_causal, decltype(tma_load_Q), decltype(tma_load_dO),
- decltype(tma_load_K), decltype(tma_load_V), decltype(tma_store_dK), decltype(tma_store_dV), decltype(tma_store_dQaccum), decltype(tma_reduce_add_dQaccum)>;
- }
- // void *kernel = (void *)flash::compute_dqkv_seqqpar<Kernel_traits, Is_causal, decltype(tma_load_Q), decltype(tma_load_dO),
- // decltype(tma_load_K), decltype(tma_load_V), decltype(tma_store_dQaccum), decltype(tma_store_dK), decltype(tma_store_dV)>;
- auto shared_storage = typename Kernel_traits::SharedStorage{};
- int smem_size = sizeof(typename Kernel_traits::SharedStorage);
- int smem_size_q = sizeof(decltype(shared_storage.smem_q));
- int smem_size_do = sizeof(decltype(shared_storage.smem_do));
- int smem_size_k = sizeof(decltype(shared_storage.smem_k));
- int smem_size_v = sizeof(decltype(shared_storage.smem_v));
- // int smem_size_p = sizeof(decltype(shared_storage.smem_p));
- int smem_size_ds = sizeof(decltype(shared_storage.smem_ds));
- // printf("smem_size = %d, q = %d, do = %d, k = %d, v = %d, p = %d, ds = %d\n", smem_size, smem_size_q, smem_size_do, smem_size_k, smem_size_v, smem_size_p, smem_size_ds);
- // printf("smem_size = %d, q = %d, do = %d, k = %d, v = %d, ds = %d\n", smem_size, smem_size_q, smem_size_do, smem_size_k, smem_size_v, smem_size_ds);
- if (smem_size >= 48 * 1024) {
- CHECK_CUDA(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
- }
- static constexpr int ctaSize = Kernel_traits::kNWarps * 32;
- int num_blocks_n = cutlass::ceil_div(params.seqlen_k, Kernel_traits::kBlockN);
- num_blocks_n = cutlass::ceil_div(num_blocks_n, size<1>(ClusterShape{})) * size<1>(ClusterShape{});
- dim3 grid_dims(num_blocks_n, params.h, params.b);
- // int num_blocks_m = cutlass::ceil_div(params.seqlen_q, Kernel_traits::kBlockM);
- // num_blocks_m = cutlass::ceil_div(num_blocks_m, size<0>(ClusterShape{})) * size<0>(ClusterShape{});
- // dim3 grid_dims(num_blocks_m, params.h, params.b);
- dim3 block_dims(ctaSize);
- dim3 cluster_dims(size<0>(ClusterShape{}), size<1>(ClusterShape{}), size<2>(ClusterShape{}));
- cutlass::ClusterLaunchParams launch_params{grid_dims, block_dims, cluster_dims, smem_size, stream};
- if constexpr (!Kernel_traits::Is_WS) {
- cutlass::launch_kernel_on_cluster(launch_params, kernel, params, tma_load_Q, tma_load_dO,
- tma_load_K, tma_load_V, tma_store_dK, tma_store_dV);
- } else {
- cutlass::launch_kernel_on_cluster(launch_params, kernel, params, tma_load_Q, tma_load_dO,
- tma_load_K, tma_load_V, tma_store_dK, tma_store_dV, tma_store_dQaccum, tma_reduce_add_dQaccum);
- }
- // cutlass::launch_kernel_on_cluster(launch_params, kernel, params, tma_load_Q, tma_load_dO,
- // tma_load_K, tma_load_V, tma_store_dQaccum, tma_store_dK, tma_store_dV);
- CHECK_CUDA_KERNEL_LAUNCH();
- auto tma_load_dQaccum = make_tma_copy(
- typename cute::SM90_TMA_LOAD{},
- mdQaccum,
- typename Kernel_traits::SmemLayoutdQaccTMA{},
- select<0, 2>(TileShape_MNK{}),
- _1{}); // no mcast for output
- // auto kernel_dq = &flash_bwd_convert_dq_kernel<Kernel_traits>;
- auto kernel_dq = &flash::convert_dQ<Kernel_traits, decltype(tma_load_dQaccum)>;
- if (Kernel_traits::kSmemdQSize * 2 + 8 >= 48 * 1024) {
- CHECK_CUDA(cudaFuncSetAttribute(
- kernel_dq, cudaFuncAttributeMaxDynamicSharedMemorySize, Kernel_traits::kSmemdQSize * 2 + 8));
- }
- kernel_dq<<<grid_m, Kernel_traits::kNThreadsdQ, Kernel_traits::kSmemdQSize * 2 + 8, stream>>>(params, tma_load_dQaccum);
- CHECK_CUDA_KERNEL_LAUNCH();
- // auto kernel_dkv = &flash_bwd_convert_dkv_kernel<Kernel_traits>;
- // if (Kernel_traits::kSmemdKVSize >= 48 * 1024) {
- // CHECK_CUDA(cudaFuncSetAttribute(
- // kernel_dkv, cudaFuncAttributeMaxDynamicSharedMemorySize, Kernel_traits::kSmemdKVSize));
- // }
- // int num_n_block = cute::ceil_div(params.seqlen_k, Kernel_traits::kBlockN);
- // dim3 grid_n(num_n_block, params.b, params.h);
- // kernel_dkv<<<grid_n, Kernel_traits::kNThreads, Kernel_traits::kSmemdKVSize, stream>>>(params);
- // CHECK_CUDA_KERNEL_LAUNCH();
- }
- template<typename T>
- void run_mha_bwd_hdim64(Flash_bwd_params ¶ms, cudaStream_t stream) {
- constexpr static int Headdim = 64;
- // BOOL_SWITCH(params.is_causal, Is_causal, [&] {
- // run_flash_bwd<T, Headdim, Is_causal>(params, stream);
- // });
- // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 128, 8, false, false, false, 2, 2, 2, 1, T>, false>(params, stream);
- run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 128, 12, true, false, false, 1, 2, 2, 1, T>, false>(params, stream);
- // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 96, 128, 12, true, false, true, 1, 2, 2, 1, T>, false>(params, stream);
- }
- template<typename T>
- void run_mha_bwd_hdim128(Flash_bwd_params ¶ms, cudaStream_t stream) {
- constexpr static int Headdim = 128;
- // BOOL_SWITCH(params.is_causal, Is_causal, [&] {
- // run_flash_bwd<T, Headdim, Is_causal>(params, stream);
- // });
- // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 64, 8, false, 2, 1, 2, 1, T>, false>(params, stream);
- // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, false, false, false, 1, 2, 1, 1, T>, false>(params, stream);
- // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 96, 8, false, true, false, 2, 1, 2, 1, T>, false>(params, stream);
- // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 128, 96, 8, false, true, true, 2, 1, 1, 1, T>, false>(params, stream);
- // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 8, true, false, true, 1, 2, 1, 1, T>, false>(params, stream);
- run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 12, true, false, true, 1, 2, 1, 1, T>, false>(params, stream);
- // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 12, true, false, false, 1, 2, 1, 1, T>, false>(params, stream);
- // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 64, 128, 12, false, false, false, 1, 2, 1, 1, T>, false>(params, stream);
- // run_flash_bwd<Flash_bwd_kernel_traits<Headdim, 80, 128, 12, true, false, true, 1, 2, 1, 1, T>, false>(params, stream);
- // run_flash_bwd<Flash_bwd_seqqpar_kernel_traits<Headdim, 128, 64, 8, false, true, false, 2, 1, 2, 1, T>, false>(params, stream);
- // run_flash_bwd<Flash_bwd_seqqpar_kernel_traits<Headdim, 96, 128, 8, true, false, true, 1, 2, 1, 1, T>, false>(params, stream);
- }
- template<typename T>
- void run_mha_bwd_hdim256(Flash_bwd_params ¶ms, cudaStream_t stream) {
- // constexpr static int Headdim = 256;
- // BOOL_SWITCH(params.is_causal, Is_causal, [&] {
- // run_flash_bwd<T, Headdim, Is_causal>(params, stream);
- // });
- }
|