123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579 |
- /******************************************************************************
- * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
- ******************************************************************************/
- #pragma once
- #include <cutlass/cutlass.h>
- #include <cutlass/array.h>
- #include <cutlass/numeric_types.h>
- #include <cutlass/numeric_conversion.h>
- #include "cutlass/pipeline/pipeline.hpp"
- #include "cute/tensor.hpp"
- #include "cutlass/gemm/collective/collective_builder.hpp"
- #include "named_barrier.hpp"
- #include "utils.h"
- namespace flash {
- using namespace cute;
- template <typename Ktraits, bool Is_causal, typename Seqlen_traits>
- struct CollectiveMainloopFwd {
- using Element = typename Ktraits::Element;
- using TileShape_MNK = typename Ktraits::TileShape_MNK;
- using ClusterShape = typename Ktraits::ClusterShape_MNK;
- static constexpr int kStages = Ktraits::kStages;
- static constexpr int kHeadDim = Ktraits::kHeadDim;
- using GmemTiledCopyQ = cute::SM90_TMA_LOAD;
- using GmemTiledCopyKV = decltype(cutlass::gemm::collective::detail::sm90_cluster_shape_to_tma_atom(shape<0>(ClusterShape{})));
- using SmemLayoutAtomQ = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
- decltype(cute::get<0>(TileShape_MNK{})), decltype(cute::get<2>(TileShape_MNK{}))>());
- using SmemLayoutQ = decltype(tile_to_shape(SmemLayoutAtomQ{}, select<0, 2>(TileShape_MNK{})));
- using SmemLayoutAtomK = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
- decltype(cute::get<1>(TileShape_MNK{})), decltype(cute::get<2>(TileShape_MNK{}))>());
- using SmemLayoutK =
- decltype(tile_to_shape(SmemLayoutAtomK{},
- make_shape(shape<1>(TileShape_MNK{}), shape<2>(TileShape_MNK{}), Int<kStages>{})));
- using SmemLayoutAtomVFp8 = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
- decltype(cute::get<2>(TileShape_MNK{})), decltype(cute::get<1>(TileShape_MNK{}))>());
- using SmemLayoutVFp8 =
- decltype(tile_to_shape(SmemLayoutAtomVFp8{},
- make_shape(shape<2>(TileShape_MNK{}), shape<1>(TileShape_MNK{}), Int<kStages>{})));
- using SmemLayoutVFp16 = SmemLayoutK;
- // Note this is the transpose in terms of the view, not in terms of memory.
- using SmemLayoutVtFp16 =
- decltype(cute::composition(SmemLayoutVFp16{},
- make_layout(make_shape(get<2>(TileShape_MNK{}), get<1>(TileShape_MNK{}), Int<kStages>{}),
- make_stride(get<1>(TileShape_MNK{}), _1{}, Int<size(SmemLayoutVFp16{}(_, _, _0{}))>{}))));
- using SmemLayoutV = decltype(cute::conditional_return<is_same_v<Element, cutlass::float_e4m3_t>>(SmemLayoutVFp8{}, SmemLayoutVFp16{}));
- using SmemLayoutVt = decltype(cute::conditional_return<is_same_v<Element, cutlass::float_e4m3_t>>(SmemLayoutVFp8{}, SmemLayoutVtFp16{}));
- // Dummy S layout for getting the shape for GEMM-II.
- using SmemLayoutAtomS = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
- decltype(cute::get<0>(TileShape_MNK{})), decltype(cute::get<1>(TileShape_MNK{}))>());
- using SmemLayoutS =
- decltype(tile_to_shape(SmemLayoutAtomS{},
- make_shape(shape<0>(TileShape_MNK{}), shape<1>(TileShape_MNK{}))));
- // using SmemLayoutAtomVt = cute::GMMA::Layout_MN_SW128_Atom<Element>;
- // using SmemLayoutVt =
- // decltype(tile_to_shape(SmemLayoutAtomVt{},
- // make_shape(shape<2>(TileShape_MNK{}), shape<1>(TileShape_MNK{}), Int<kStages>{}),
- // Step<_2, _1, _3>{})); // This gives correct results, without Step it's wrong
- // using SmemLayoutAtomVt = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::MN, Element,
- // decltype(cute::get<2>(TileShape_MNK{})), decltype(cute::get<1>(TileShape_MNK{}))>());
- // using SmemLayoutVt =
- // decltype(tile_to_shape(SmemLayoutAtomVt{},
- // make_shape(shape<2>(TileShape_MNK{}), shape<1>(TileShape_MNK{}), Int<kStages>{})));
- // using SmemLayoutAtomVTMA = cute::GMMA::Layout_K_SW128_Atom<Element>;
- // using SmemLayoutVTMA =
- // decltype(tile_to_shape(SmemLayoutAtomVTMA{},
- // make_shape(shape<1>(TileShape_MNK{}), shape<2>(TileShape_MNK{}), Int<kStages>{})));
- using TMA_Q = decltype(make_tma_copy(
- GmemTiledCopyQ{},
- make_tensor(
- make_gmem_ptr(static_cast<Element const*>(nullptr)),
- repeat_like(typename Seqlen_traits::StrideT{}, int32_t(0)),
- typename Seqlen_traits::StrideT{}
- ),
- SmemLayoutQ{},
- select<0, 2>(TileShape_MNK{}),
- _1{})); // no mcast for Q
- using TMA_KV = decltype(make_tma_copy(
- GmemTiledCopyKV{},
- make_tensor(
- make_gmem_ptr(static_cast<Element const*>(nullptr)),
- repeat_like(typename Seqlen_traits::StrideT{}, int32_t(0)),
- typename Seqlen_traits::StrideT{}
- ),
- take<0, 2>(SmemLayoutK{}),
- select<1, 2>(TileShape_MNK{}),
- size<0>(ClusterShape{}))); // mcast along M mode for this N load, if any
- //
- using TileShapeVFP8 = decltype(make_shape(cute::get<2>(TileShape_MNK{}), cute::get<1>(TileShape_MNK{})));
- using TileShapeVFP16 = decltype(make_shape(cute::get<1>(TileShape_MNK{}), cute::get<2>(TileShape_MNK{})));
- using TileShapeV = decltype(cute::conditional_return<is_same_v<Element, cutlass::float_e4m3_t>>(TileShapeVFP8{}, TileShapeVFP16{}));
- using TMA_VFP8 = decltype(make_tma_copy(
- GmemTiledCopyKV{},
- make_tensor(make_gmem_ptr(static_cast<Element const*>(nullptr)), repeat_like(StrideQKV{}, int32_t(0)), StrideQKV{}),
- take<0, 2>(SmemLayoutV{}),
- TileShapeV{},
- size<0>(ClusterShape{}))); // mcast along M mode for this N load, if any
-
- using TMA_V = decltype(cute::conditional_return<is_same_v<Element, cutlass::float_e4m3_t>>(TMA_VFP8{}, TMA_KV{}));
- static constexpr int NumMmaThreads = size(typename Ktraits::TiledMma0{});
- using MainloopPipeline = typename Ktraits::MainloopPipeline;
- using PipelineParams = typename MainloopPipeline::Params;
- using PipelineState = typename MainloopPipeline::PipelineState;
- // Set the bytes transferred in this TMA transaction (may involve multiple issues)
- static constexpr uint32_t TmaTransactionBytesQ = static_cast<uint32_t>(size(SmemLayoutQ{}) * cutlass::sizeof_bits_v<Element> / 8);
- static constexpr uint32_t TmaTransactionBytesK = static_cast<uint32_t>(size(take<0, 2>(SmemLayoutK{})) * cutlass::sizeof_bits_v<Element> / 8);
- static constexpr bool UseSchedulerBarrier = kHeadDim <= 128;
- // Host side kernel arguments
- struct Arguments {
- Element const* ptr_Q;
- typename Seqlen_traits::LayoutT layout_Q;
- Element const* ptr_K;
- typename Seqlen_traits::LayoutT layout_K;
- Element const* ptr_V;
- typename Seqlen_traits::LayoutT layout_V;
- float const softmax_scale_log2;
- };
- // Device side kernel params
- struct Params {
- typename Seqlen_traits::LayoutT layout_Q;
- typename Seqlen_traits::LayoutT layout_K;
- typename Seqlen_traits::LayoutT layout_V;
- cutlass::FastDivmod qhead_per_khead_divmod;
- TMA_Q tma_load_Q;
- TMA_KV tma_load_K;
- TMA_V tma_load_V;
- float const softmax_scale_log2;
- };
- static Params
- to_underlying_arguments(Arguments const& args) {
- Tensor mQ = make_tensor(make_gmem_ptr(args.ptr_Q), args.layout_Q);
- TMA_Q tma_load_Q = make_tma_copy(
- GmemTiledCopyQ{},
- mQ,
- SmemLayoutQ{},
- select<0, 2>(TileShape_MNK{}),
- _1{}); // no mcast for Q
- Tensor mK = make_tensor(make_gmem_ptr(args.ptr_K), args.layout_K);
- TMA_KV tma_load_K = make_tma_copy(
- GmemTiledCopyKV{},
- mK,
- SmemLayoutK{}(_, _, _0{}),
- select<1, 2>(TileShape_MNK{}),
- size<0>(ClusterShape{})); // mcast along M mode for this N load, if any
- auto gmemLayoutVFp16 = args.shape_K;
- auto gmemLayoutVFp8 = select<1, 0, 2, 3>(gmemLayoutVFp16);
- auto gmemLayoutV = cute::conditional_return<is_same_v<Element, cutlass::float_e4m3_t>>(gmemLayoutVFp8, gmemLayoutVFp16);
- Tensor mV = make_tensor(make_gmem_ptr(args.ptr_V), gmemLayoutV, args.layout_V.stride());
- TMA_V tma_load_V = make_tma_copy(
- GmemTiledCopyKV{},
- mV,
- SmemLayoutV{}(_, _, _0{}),
- cute::conditional_return<is_same_v<Element, cutlass::float_e4m3_t>>(select<2, 1>(TileShape_MNK{}), select<1, 2>(TileShape_MNK{})),
- size<0>(ClusterShape{})); // mcast along M mode for this N load, if any
- return {args.layout_Q, args.layout_K, args.layout_V,
- cutlass::FastDivmod(cute::ceil_div(get<2>(args.layout_Q.shape()), get<2>(args.layout_K.shape()))),
- tma_load_Q, tma_load_K, tma_load_V,
- args.softmax_scale_log2};
- }
- /// Issue Tma Descriptor Prefetch -- ideally from a single thread for best performance
- CUTLASS_DEVICE
- static void prefetch_tma_descriptors(Params const& mainloop_params) {
- cute::prefetch_tma_descriptor(mainloop_params.tma_load_Q.get_tma_descriptor());
- cute::prefetch_tma_descriptor(mainloop_params.tma_load_K.get_tma_descriptor());
- cute::prefetch_tma_descriptor(mainloop_params.tma_load_V.get_tma_descriptor());
- }
- CUTLASS_DEVICE
- int get_n_block_max(
- Params const& mainloop_params, int m_block,
- const Seqlen_traits& seqlen_traits_q,
- const Seqlen_traits& seqlen_traits_k
- ) {
- static constexpr int kBlockM = get<0>(TileShape_MNK{});
- static constexpr int kBlockN = get<1>(TileShape_MNK{});
- int const seqlen_q = seqlen_traits_q.actual_seq_len;
- int const seqlen_k = seqlen_traits_k.actual_seq_len;
- int n_block_max = cute::ceil_div(seqlen_k, kBlockN);
- if constexpr (Is_causal) {
- n_block_max = std::min(n_block_max,
- cute::ceil_div((m_block + 1) * kBlockM + seqlen_k - seqlen_q, kBlockN));
- }
- return n_block_max;
- }
- template <typename Scheduler, typename SharedStorage>
- CUTLASS_DEVICE void
- load(Params const& mainloop_params,
- MainloopPipeline pipeline_k,
- MainloopPipeline pipeline_v,
- PipelineState& smem_pipe_write_k,
- PipelineState& smem_pipe_write_v,
- SharedStorage &shared_storage,
- Scheduler& scheduler,
- typename Scheduler::Params const& scheduler_params,
- typename Scheduler::WorkTileInfo& work_tile_info,
- cute::tuple<int32_t, int32_t, int32_t> block_coord,
- int work_idx,
- const Seqlen_traits& seqlen_traits_q,
- const Seqlen_traits& seqlen_traits_k
- ) {
- Tensor sQ = make_tensor(make_smem_ptr(shared_storage.smem_q.data()), SmemLayoutQ{});
- Tensor sK = make_tensor(make_smem_ptr(shared_storage.smem_k.data()), SmemLayoutK{});
- Tensor sV = make_tensor(make_smem_ptr(shared_storage.smem_v.data()), SmemLayoutV{});
- Tensor mQ = mainloop_params.tma_load_Q.get_tma_tensor(mainloop_params.layout_Q.shape());
- Tensor mK = mainloop_params.tma_load_K.get_tma_tensor(mainloop_params.layout_K.shape());
- auto gmemLayoutVFp16 = mainloop_params.shape_K;
- auto gmemLayoutVFp8 = select<1, 0, 2, 3>(gmemLayoutVFp16);
- auto gmemLayoutV = cute::conditional_return<is_same_v<Element, cutlass::float_e4m3_t>>(gmemLayoutVFp8, gmemLayoutVFp16);
- Tensor mV = mainloop_params.tma_load_V.get_tma_tensor(gmemLayoutV);
- auto [m_block, bidh, bidb] = block_coord;
- int bidh_kv = mainloop_params.qhead_per_khead_divmod.divide(bidh);
- // Prepare the TMA loads
- uint32_t block_rank_in_cluster = cute::block_rank_in_cluster();
- constexpr uint32_t cluster_shape_x = get<0>(ClusterShape());
- uint2 cluster_local_block_id = {block_rank_in_cluster % cluster_shape_x, block_rank_in_cluster / cluster_shape_x};
- Tensor gQ = local_tile(mQ(_, _, bidh, bidb), select<0, 2>(TileShape_MNK{}), make_coord(m_block, _0{})); // (M, K)
- Tensor gK = local_tile(mK(_, _, bidh_kv, bidb), select<1, 2>(TileShape_MNK{}), make_coord(_, _0{})); // (N, K, _)
- Tensor gV = local_tile(mV(_, _, bidh_kv, bidb), TileShapeV{}, cute::conditional_return<is_same_v<Element, cutlass::float_e4m3_t>>(make_coord(_0{}, _), make_coord(_, _0{}))); // (N, K, _)
- #if 0
- if (threadIdx.x == 0 && blockIdx.x == 0) {
- print ("\n");
- print (gV);
- print ("\n");
- print (gK);
- print ("\n");
- print ("\n");
- print (sV);
- print ("\n");
- print (sK);
- print ("\n");
- print (gmemLayoutVFp8);
- print ("\n");
- print (gmemLayoutVFp16);
- }
- // Tensor gQ = seqlen_traits_q.get_local_tile_tensor(
- // mQ, select<0, 2>(TileShape_MNK{}), bidh, bidb)(_, _, m_block); // (M, K)
- // Tensor gK = seqlen_traits_k.get_local_tile_tensor(
- // mK, select<1, 2>(TileShape_MNK{}), bidh_kv, bidb); // (N, K, _)
- // Tensor gV = seqlen_traits_k.get_local_tile_tensor(
- // mV, select<1, 2>(TileShape_MNK{}), bidh_kv, bidb); // (N, K, _)
- Tensor sQ_x = make_tensor(sQ.data(), make_layout(sQ.layout(), Layout<_1>{}));
- Tensor gQ_x = make_tensor(gQ.data(), make_layout(gQ.layout(), Layout<_1>{}));
- auto [tQgQ, tQsQ] = tma_partition(mainloop_params.tma_load_Q, _0{}, Layout<_1>{},
- group_modes<0, 2>(sQ_x), group_modes<0, 2>(gQ_x)); // (TMA), (TMA)
- auto [tKgK, tKsK] = tma_partition(mainloop_params.tma_load_K, block_rank_in_cluster, Layout<ClusterShape>{},
- group_modes<0, 2>(sK), group_modes<0, 2>(gK)); // (TMA, k), (TMA, PIPE)
- auto [tVgV, tVsV] = tma_partition(mainloop_params.tma_load_V, block_rank_in_cluster, Layout<ClusterShape>{},
- group_modes<0, 2>(sV), group_modes<0, 2>(gV)); // (TMA, k), (TMA, PIPE)
- uint16_t mcast_mask_kv = 0;
- if constexpr (cute::is_same_v<GmemTiledCopyKV, SM90_TMA_LOAD_MULTICAST>) {
- auto block_layout = Layout<ClusterShape>{}; // (m,n) -> block_id
- for (int m = 0; m < size<0>(block_layout); ++m) {
- mcast_mask_kv |= (uint16_t(1) << block_layout(m, cluster_local_block_id.y, _0{}));
- }
- }
- int n_block_max = get_n_block_max(mainloop_params, m_block, seqlen_traits_q, seqlen_traits_k);
- int n_block = n_block_max - 1;
- int lane_predicate = cute::elect_one_sync();
- if (lane_predicate) {
- pipeline_k.producer_acquire(smem_pipe_write_k);
- copy(mainloop_params.tma_load_K.with(*pipeline_k.producer_get_barrier(smem_pipe_write_k), mcast_mask_kv),
- tKgK(_, n_block), tKsK(_, smem_pipe_write_k.index()));
- ++smem_pipe_write_k;
- }
- // Wait for the MMA warpgroups to say that smem_q is ready
- cutlass::arch::NamedBarrier::sync(NumMmaThreads + cutlass::NumThreadsPerWarp, static_cast<int>(FwdNamedBarriers::QueryEmpty) /*id*/);
- if (lane_predicate) {
- shared_storage.barrier_Q.arrive_and_expect_tx(TmaTransactionBytesQ);
- copy(mainloop_params.tma_load_Q.with(reinterpret_cast<cutlass::arch::ClusterTransactionBarrier::ValueType&>(shared_storage.barrier_Q), 0 /*mcast_mask*/), tQgQ, tQsQ);
- }
- // Wait for warp 1 to signal that smem_v are ready and V can be copied from gmem
- // Need ClusterBarrier, not just NamedBarrier. Otherwise we might have CTA 0 finishing the
- // TMA store on O first, call TMA multicast load on V, before CTA 1 can finishing TMA store on O.
- shared_storage.barrier_O.wait((work_idx + 1) % 2);
- if (lane_predicate) {
- // CUTLASS_PRAGMA_NO_UNROLL
- #pragma unroll 2
- for (; n_block > 0; --n_block) {
- pipeline_k.producer_acquire(smem_pipe_write_k);
- copy(mainloop_params.tma_load_K.with(*pipeline_k.producer_get_barrier(smem_pipe_write_k), mcast_mask_kv),
- tKgK(_, n_block - 1), tKsK(_, smem_pipe_write_k.index()));
- ++smem_pipe_write_k;
- pipeline_v.producer_acquire(smem_pipe_write_v);
- copy(mainloop_params.tma_load_V.with(*pipeline_v.producer_get_barrier(smem_pipe_write_v), mcast_mask_kv),
- tVgV(_, n_block), tVsV(_, smem_pipe_write_v.index()));
- ++smem_pipe_write_v;
- }
- }
- scheduler.prefetch_next_work(scheduler_params, work_tile_info);
- if (lane_predicate) {
- pipeline_v.producer_acquire(smem_pipe_write_v);
- copy(mainloop_params.tma_load_V.with(*pipeline_v.producer_get_barrier(smem_pipe_write_v), mcast_mask_kv),
- tVgV(_, n_block), tVsV(_, smem_pipe_write_v.index()));
- ++smem_pipe_write_v;
- }
- scheduler.broadcast_next_work(work_tile_info);
- }
- /// Perform a Producer Epilogue to prevent early exit of blocks in a Cluster
- CUTLASS_DEVICE void
- load_tail(MainloopPipeline pipeline_k, MainloopPipeline pipeline_v,
- PipelineState& smem_pipe_write_k, PipelineState& smem_pipe_write_v) {
- int lane_predicate = cute::elect_one_sync();
- // Issue the epilogue waits
- if (lane_predicate) {
- /* This helps avoid early exit of blocks in Cluster
- * Waits for all stages to either be released (all Consumer UNLOCKs), or if the stage was never used
- * then would just be acquired since the phase was still inverted from make_producer_start_state
- */
- pipeline_k.producer_tail(smem_pipe_write_k);
- pipeline_v.producer_tail(smem_pipe_write_v);
- }
- }
- CUTLASS_DEVICE void
- warp_scheduler_barrier_sync() {
- if constexpr (UseSchedulerBarrier) {
- cutlass::arch::NamedBarrier::sync(NumMmaThreads, static_cast<int>(FwdNamedBarriers::WarpSchedulerWG1) - 1 + cutlass::canonical_warp_group_idx() /*id*/);
- }
- }
- CUTLASS_DEVICE void
- warp_scheduler_barrier_arrive() {
- if constexpr (!UseSchedulerBarrier) { return; }
- static_assert(NumMmaThreads == 2 * cutlass::NumThreadsPerWarpGroup || NumMmaThreads == 3 * cutlass::NumThreadsPerWarpGroup);
- if constexpr (NumMmaThreads == 2 * cutlass::NumThreadsPerWarpGroup) {
- cutlass::arch::NamedBarrier::arrive(NumMmaThreads, static_cast<int>(FwdNamedBarriers::WarpSchedulerWG1) - 1 + (3 - cutlass::canonical_warp_group_idx()) /*id*/);
- } else {
- cutlass::arch::NamedBarrier::arrive(NumMmaThreads, static_cast<int>(FwdNamedBarriers::WarpSchedulerWG1) - 1 + (cutlass::canonical_warp_group_idx() <= 2 ? cutlass::canonical_warp_group_idx() + 1 : cutlass::canonical_warp_group_idx() + 1 - 3) /*id*/);
- cutlass::arch::NamedBarrier::arrive(NumMmaThreads, static_cast<int>(FwdNamedBarriers::WarpSchedulerWG1) - 1 + (cutlass::canonical_warp_group_idx() <= 1 ? cutlass::canonical_warp_group_idx() + 2 : cutlass::canonical_warp_group_idx() + 2 - 3) /*id*/);
- }
- }
- CUTLASS_DEVICE void
- mma_init() {
- // Tell producer (warp 0) that smem_q is ready
- cutlass::arch::NamedBarrier::arrive(NumMmaThreads + cutlass::NumThreadsPerWarp, static_cast<int>(FwdNamedBarriers::QueryEmpty) /*id*/);
- if constexpr (!UseSchedulerBarrier) { return; }
- static_assert(NumMmaThreads == 2 * cutlass::NumThreadsPerWarpGroup || NumMmaThreads == 3 * cutlass::NumThreadsPerWarpGroup);
- if (cutlass::canonical_warp_group_idx() > 1) {
- cutlass::arch::NamedBarrier::arrive(NumMmaThreads, static_cast<int>(FwdNamedBarriers::WarpSchedulerWG1) - 1 + 1 /*id*/);
- }
- if constexpr (NumMmaThreads == 3 * cutlass::NumThreadsPerWarpGroup) {
- if (cutlass::canonical_warp_group_idx() > 2) {
- cutlass::arch::NamedBarrier::arrive(NumMmaThreads, static_cast<int>(FwdNamedBarriers::WarpSchedulerWG1) - 1 + 2 /*id*/);
- }
- }
- }
- template <typename SharedStorage, typename FrgTensorO, typename Softmax>
- CUTLASS_DEVICE void
- mma(Params const& mainloop_params,
- MainloopPipeline pipeline_k,
- MainloopPipeline pipeline_v,
- PipelineState& smem_pipe_read_k,
- PipelineState& smem_pipe_read_v,
- FrgTensorO& tOrO,
- Softmax& softmax,
- int n_block_count,
- int thread_idx,
- int work_idx,
- int m_block,
- SharedStorage& shared_storage,
- const Seqlen_traits& seqlen_traits_q,
- const Seqlen_traits& seqlen_traits_k
- ) {
- static_assert(is_rmem<FrgTensorO>::value, "O tensor must be rmem resident.");
- static constexpr int kBlockM = get<0>(TileShape_MNK{});
- static constexpr int kBlockN = get<1>(TileShape_MNK{});
- Tensor sQ = make_tensor(make_smem_ptr(shared_storage.smem_q.data()), SmemLayoutQ{});
- Tensor sK = make_tensor(make_smem_ptr(shared_storage.smem_k.data()), SmemLayoutK{});
- Tensor sVt = make_tensor(make_smem_ptr(shared_storage.smem_v.data()), SmemLayoutVt{});
- typename Ktraits::TiledMma0 tiled_mma0;
- typename Ktraits::TiledMma1 tiled_mma1;
- auto threadMma0 = tiled_mma0.get_thread_slice(thread_idx);
- auto threadMma1 = tiled_mma1.get_thread_slice(thread_idx);
- // Allocate "fragments/descriptors" for first matmul.
- Tensor tSrQ = threadMma0.partition_fragment_A(sQ);
- Tensor tSrK = threadMma0.partition_fragment_B(sK);
- // Allocate "fragments/descriptors" for second matmul.
- // Note: S becomes P.
- Tensor tOrV = threadMma1.partition_fragment_B(sVt);
- // Dummy sS to just get the shape correctly for GEMM-II.
- Tensor sS = make_tensor(make_smem_ptr(shared_storage.smem_k.data()), SmemLayoutS{});
- Tensor tOrS = threadMma1.partition_fragment_A(sS);
- Tensor tSrS = partition_fragment_C(tiled_mma0, select<0, 1>(TileShape_MNK{}));
- ReorgCFp8toAFp8 reg2reg;
- auto tOrPLayout = ReshapeTStoTP()(tSrS, tOrS);
- auto consumer_wait = [](auto& pipeline, auto& smem_pipe_read) {
- auto barrier_token = pipeline.consumer_try_wait(smem_pipe_read);
- pipeline.consumer_wait(smem_pipe_read, barrier_token);
- };
- tiled_mma1.accumulate_ = GMMA::ScaleOut::Zero;
- int const seqlen_q = seqlen_traits_q.actual_seq_len;
- int const seqlen_k = seqlen_traits_k.actual_seq_len;
- int n_block = n_block_count - 1;
- cutlass::ConsumerToken barrier_token = static_cast<cutlass::BarrierStatus>(shared_storage.barrier_Q.try_wait(work_idx % 2));
- if (barrier_token == cutlass::BarrierStatus::WaitAgain) { shared_storage.barrier_Q.wait(work_idx % 2); }
- consumer_wait(pipeline_k, smem_pipe_read_k);
- warp_scheduler_barrier_sync();
- flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiled_mma0, tSrQ, tSrK(_, _, _, smem_pipe_read_k.index()), tSrS);
- warp_scheduler_barrier_arrive();
- if (work_idx != 0) {
- int lane_predicate = cute::elect_one_sync();
- if (cutlass::canonical_warp_idx_sync() == Ktraits::kNWarps - 1 && lane_predicate) {
- tma_store_wait<0>();
- #pragma unroll
- for (uint32_t cta_id = 0; cta_id < size(ClusterShape{}); ++cta_id) {
- shared_storage.barrier_O.arrive(cta_id, lane_predicate);
- }
- }
- }
- warpgroup_wait<0>();
- pipeline_k.consumer_release(smem_pipe_read_k);
- ++smem_pipe_read_k;
- auto col_limit_causal = [&](int row, int n_block) {
- return row + 1 + seqlen_k - n_block * kBlockN - seqlen_q + m_block * kBlockM;
- };
- {
- Tensor cS = cute::make_identity_tensor(select<0, 1>(TileShape_MNK{}));
- Tensor tScS = threadMma0.partition_C(cS);
- #pragma unroll
- for (int i = 0; i < size(tSrS); ++i) {
- if constexpr (!Is_causal) { // Just masking based on col
- if (int(get<1>(tScS(i))) >= int(seqlen_k - n_block * kBlockN)) { tSrS(i) = -INFINITY; }
- } else { // mask based on both row and col
- // using std::min is faster than doing col >= limit0 or col >= limit1
- // Need to cast get<1>(tScS(i)) to (signed) int since by default it's unsigned, and the
- // right hand side can be negative and might be converted to a very large unsigned integer.
- if (int(get<1>(tScS(i))) >= std::min(seqlen_k - n_block * kBlockN,
- col_limit_causal(int(get<0>(tScS(i))), n_block))) {
- tSrS(i) = -INFINITY;
- }
- }
- }
- }
- softmax.template online_softmax</*Is_first=*/true>(tSrS, mainloop_params.softmax_scale_log2);
- auto tSrSPrec = convert_type<Element>(tSrS);
- if constexpr (is_same_v<Element, cutlass::float_e4m3_t>) {
- reg2reg(tSrSPrec);
- }
- Tensor tOrP = make_tensor(tSrSPrec.data(), tOrPLayout);
- Tensor scores_scale = make_fragment_like(softmax.row_max);
- clear(scores_scale);
- constexpr int n_masking_steps = !Is_causal ? 1 : cute::ceil_div(kBlockM, kBlockN) + 1;
- // Only go through these if Is_causal, since n_masking_steps = 1 when !Is_causal
- #pragma unroll
- for (int masking_step = 0; masking_step < n_masking_steps - 1 && n_block > 0; ++masking_step, --n_block) {
- Tensor tSrS = partition_fragment_C(tiled_mma0, select<0, 1>(TileShape_MNK{}));
- consumer_wait(pipeline_k, smem_pipe_read_k);
- warp_scheduler_barrier_sync();
- flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiled_mma0, tSrQ, tSrK(_, _, _, smem_pipe_read_k.index()), tSrS);
- if (masking_step > 0) { softmax.rescale_o(tOrO, scores_scale); }
- consumer_wait(pipeline_v, smem_pipe_read_v);
- flash::gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiled_mma1, tOrP, tOrV(_, _, _, smem_pipe_read_v.index()), tOrO);
- warp_scheduler_barrier_arrive();
- warpgroup_wait<1>();
- pipeline_k.consumer_release(smem_pipe_read_k); // release K
- Tensor cS = cute::make_identity_tensor(select<0, 1>(TileShape_MNK{}));
- Tensor tScS = threadMma0.partition_C(cS);
- #pragma unroll
- for (int i = 0; i < size(tSrS); ++i) {
- if (int(get<1>(tScS(i))) >= col_limit_causal(int(get<0>(tScS(i))), n_block - 1)) {
- tSrS(i) = -INFINITY;
- }
- }
- cute::copy(softmax.template max</*Is_first=*/false, /*Check_inf=*/true>(tSrS, mainloop_params.softmax_scale_log2), scores_scale);
- softmax.template online_softmax</*Is_first=*/false, /*Check_inf=*/true>(tSrS, mainloop_params.softmax_scale_log2);
- warpgroup_wait<0>();
- pipeline_v.consumer_release(smem_pipe_read_v); // release V
- ++smem_pipe_read_k;
- ++smem_pipe_read_v;
- auto tSrSPrec = convert_type<Element>(tSrS);
- if constexpr (is_same_v<Element, cutlass::float_e4m3_t>) {
- reg2reg(tSrSPrec);
- }
- cute::copy(make_tensor(tSrSPrec.data(), tOrPLayout), tOrP);
- }
- #pragma unroll 1
- for (; n_block > 0; --n_block) {
- Tensor tSrS = partition_fragment_C(tiled_mma0, select<0, 1>(TileShape_MNK{}));
- consumer_wait(pipeline_k, smem_pipe_read_k);
- warp_scheduler_barrier_sync();
- flash::gemm</*zero_init=*/true, /*wg_wait=*/-1>(tiled_mma0, tSrQ, tSrK(_, _, _, smem_pipe_read_k.index()), tSrS);
- softmax.rescale_o(tOrO, scores_scale);
- consumer_wait(pipeline_v, smem_pipe_read_v);
- flash::gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiled_mma1, tOrP, tOrV(_, _, _, smem_pipe_read_v.index()), tOrO);
- warp_scheduler_barrier_arrive();
- warpgroup_wait<1>();
- pipeline_k.consumer_release(smem_pipe_read_k); // release K
- // auto scores_scale = softmax.template max</*Is_first=*/false>(tSrS);
- cute::copy(softmax.template max</*Is_first=*/false>(tSrS, mainloop_params.softmax_scale_log2), scores_scale);
- softmax.template online_softmax</*Is_first=*/false>(tSrS, mainloop_params.softmax_scale_log2);
- warpgroup_wait<0>();
- pipeline_v.consumer_release(smem_pipe_read_v); // release V
- ++smem_pipe_read_k;
- ++smem_pipe_read_v;
- // softmax.rescale_o(tOrO, scores_scale);
- auto tSrSPrec = convert_type<Element>(tSrS);
- if constexpr (is_same_v<Element, cutlass::float_e4m3_t>) {
- reg2reg(tSrSPrec);
- }
- cute::copy(make_tensor(tSrSPrec.data(), tOrPLayout), tOrP);
- }
- // Tell warp 0 that smem_q is ready
- cutlass::arch::NamedBarrier::arrive(NumMmaThreads + cutlass::NumThreadsPerWarp, static_cast<int>(FwdNamedBarriers::QueryEmpty) /*id*/);
- softmax.rescale_o(tOrO, scores_scale);
- consumer_wait(pipeline_v, smem_pipe_read_v);
- flash::gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiled_mma1, tOrP, tOrV(_, _, _, smem_pipe_read_v.index()), tOrO);
- cute::copy(softmax.template finalize</*Check_inf=*/Is_causal>(tSrS, mainloop_params.softmax_scale_log2), scores_scale);
- warpgroup_wait<0>();
- pipeline_v.consumer_release(smem_pipe_read_v); // release V, otherwise producers will hang
- ++smem_pipe_read_v;
- softmax.rescale_o(tOrO, scores_scale);
- return;
- }
- };
- } // namespace flash
|