123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159 |
- /******************************************************************************
- * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
- ******************************************************************************/
- #pragma once
- #include "cute/tensor.hpp"
- #include "cutlass/cutlass.h"
- #include "cutlass/cluster_launch.hpp"
- #include "static_switch.h"
- #include "flash.h"
- #include "tile_scheduler.hpp"
- #include "flash_fwd_kernel.h"
- #include "kernel_traits.h"
- #include "seq_len.h"
- #include "utils.h"
- template<typename Kernel_traits, bool Is_causal, typename Seqlen_traits>
- void run_flash_fwd(Flash_fwd_params ¶ms, cudaStream_t stream) {
- using Element = typename Kernel_traits::Element;
- using ElementO = decltype(cute::conditional_return<is_same_v<Element, cutlass::float_e4m3_t>>(cutlass::half_t{}, Element{}));
- using TileShape_MNK = typename Kernel_traits::TileShape_MNK;
- using ClusterShape = typename Kernel_traits::ClusterShape_MNK;
- // print(typename Kernel_traits::SmemLayoutVt{}); printf("\n"); print(typename Kernel_traits::SmemLayoutVt_tmp{});
- using CollectiveMainloop = flash::CollectiveMainloopFwd<Kernel_traits, Is_causal, Seqlen_traits>;
- using CollectiveEpilogue = flash::CollectiveEpilogueFwd<Kernel_traits, Seqlen_traits>;
- using Scheduler = std::conditional_t<
- Seqlen_traits::kUseVarSeqLen,
- flash::SingleTileScheduler,
- std::conditional_t<!Is_causal,
- flash::StaticPersistentTileScheduler,
- flash::DynamicPersistentTileScheduler<Kernel_traits::kNThreads - cutlass::NumThreadsPerWarpGroup>
- >>;
- // using Scheduler = flash::SingleTileScheduler;
- Seqlen_traits seqlen_traits_q(
- params.total_q, params.seqlen_q, params.cu_seqlens_q);
- Seqlen_traits seqlen_traits_k(
- params.total_k, params.seqlen_k, params.cu_seqlens_k, params.seqused_k);
- typename CollectiveMainloop::Params mainloop_params =
- CollectiveMainloop::to_underlying_arguments({
- static_cast<Element const*>(params.q_ptr),
- seqlen_traits_q.get_gmem_layout(
- params.seqlen_q, params.d, params.h, params.b,
- params.q_row_stride, params.q_head_stride, params.q_batch_stride
- ), // layout_Q
- static_cast<Element const*>(params.k_ptr),
- seqlen_traits_k.get_gmem_layout(
- params.seqlen_k, params.d, params.h_k, params.b,
- params.k_row_stride, params.k_head_stride, params.k_batch_stride
- ), // layout_K
- static_cast<Element const*>(params.v_ptr),
- seqlen_traits_k.get_gmem_layout(
- params.seqlen_k, params.d, params.h_k, params.b,
- params.v_row_stride, params.v_head_stride, params.v_batch_stride
- ), // layout_V
- params.scale_softmax_log2
- });
- typename CollectiveEpilogue::Params epilogue_params =
- CollectiveEpilogue::to_underlying_arguments({
- static_cast<Element*>(params.o_ptr),
- seqlen_traits_q.get_gmem_layout(
- params.seqlen_q, params.d, params.h, params.b,
- params.o_row_stride, params.o_head_stride, params.o_batch_stride
- ), // layout_O
- static_cast<float*>(params.softmax_lse_ptr),
- seqlen_traits_q.get_lse_gmem_layout(
- params.seqlen_q, params.h, params.b
- ) // layout_LSE
- });
- int num_blocks_m = cutlass::ceil_div(params.seqlen_q, Kernel_traits::kBlockM);
- num_blocks_m = cutlass::ceil_div(num_blocks_m, size<0>(ClusterShape{})) * size<0>(ClusterShape{});
- typename Scheduler::Arguments scheduler_args = {num_blocks_m, params.h, params.b, params.tile_count_semaphore};
- typename Scheduler::Params scheduler_params = Scheduler::to_underlying_arguments(scheduler_args);
- // Get the ptr to kernel function.
- void *kernel;
- kernel = (void *)flash::compute_attn_ws<Kernel_traits, Is_causal, Scheduler, Seqlen_traits>;
- int smem_size = sizeof(typename Kernel_traits::SharedStorage);
- // int smem_size_q = sizeof(decltype((typename Kernel_traits::SharedStorage{}).smem_q));
- // int smem_size_k = sizeof(decltype((typename Kernel_traits::SharedStorage{}).smem_k));
- // int smem_size_v = sizeof(decltype((typename Kernel_traits::SharedStorage{}).smem_v));
- // printf("smem_size = %d, q = %d, k = %d, v = %d\n", smem_size, smem_size_q, smem_size_k, smem_size_v);
- if (smem_size >= 48 * 1024) {
- CHECK_CUDA(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
- }
- int device;
- cudaGetDevice(&device);
- int multiprocessor_count;
- cudaError status_ = cudaDeviceGetAttribute(
- &multiprocessor_count, cudaDevAttrMultiProcessorCount, device);
- if (status_ != cudaSuccess) {
- CHECK_CUDA(status_);
- }
- dim3 grid_dims = Scheduler::get_grid_dim(scheduler_args, multiprocessor_count);
- static constexpr int ctaSize = Kernel_traits::kNWarps * 32;
- dim3 block_dims(ctaSize);
- dim3 cluster_dims(size<0>(ClusterShape{}), size<1>(ClusterShape{}), size<2>(ClusterShape{}));
- cutlass::ClusterLaunchParams launch_params{grid_dims, block_dims, cluster_dims, smem_size, stream};
- cutlass::launch_kernel_on_cluster(
- launch_params, kernel, mainloop_params, epilogue_params,
- scheduler_params, seqlen_traits_q, seqlen_traits_k);
- CHECK_CUDA_KERNEL_LAUNCH();
- }
- template<typename T>
- void run_mha_fwd_hdim64(Flash_fwd_params ¶ms, cudaStream_t stream) {
- constexpr static int Headdim = 64;
- BOOL_SWITCH(params.is_causal, Is_causal, [&] {
- SEQLEN_SWITCH(params.cu_seqlens_q, Seqlen_traits, [&] {
- run_flash_fwd<
- Flash_fwd_kernel_traits<Headdim, 192, 128, 16, 2, false, 1, T>,
- Is_causal, Seqlen_traits
- >(params, stream);
- });
- });
- }
- template<typename T>
- void run_mha_fwd_hdim128(Flash_fwd_params ¶ms, cudaStream_t stream) {
- constexpr static int Headdim = 128;
- BOOL_SWITCH(params.is_causal, Is_causal, [&] {
- SEQLEN_SWITCH(params.cu_seqlens_q, Seqlen_traits, [&] {
- // Only use Cluster if number of tiles along seqlen_q is even and not Is_causal
- BOOL_SWITCH(cutlass::ceil_div(params.seqlen_q, 128) % 2 == 0 && !Is_causal && !Seqlen_traits::kUseVarSeqLen, UseCluster, [&] {
- if constexpr (is_same_v<T, cutlass::float_e4m3_t>) {
- //run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 192, 128, 16, 3, false, !Is_causal && UseCluster ? 2 : 1, T>, Is_causal>(params, stream);
- //run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 192, 128, 16, 2, false, !Is_causal && UseCluster ? 2 : 1, T>, Is_causal>(params, stream);
- run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 128, 12, 4, false, !Is_causal && UseCluster ? 2 : 1, T>, Is_causal, Seqlen_traits>(params, stream);
- //run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 128, 12, 4, false, !Is_causal && UseCluster ? 2 : 1, T>, Is_causal>(params, stream);
- } else {
- run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, Is_causal ? 128 : 176, 12, 2, false, UseCluster ? 2 : 1, T>, Is_causal, Seqlen_traits>(params, stream);
- }
- });
- });
- });
- }
- template<typename T>
- void run_mha_fwd_hdim256(Flash_fwd_params ¶ms, cudaStream_t stream) {
- constexpr static int Headdim = 256;
- BOOL_SWITCH(params.is_causal, Is_causal, [&] {
- SEQLEN_SWITCH(params.cu_seqlens_q, Seqlen_traits, [&] {
- // Only use Cluster if number of tiles along seqlen_q is even
- BOOL_SWITCH(cutlass::ceil_div(params.seqlen_q, 128) % 2 == 0 && !Is_causal && !Seqlen_traits::kUseVarSeqLen, UseCluster, [&] {
- if constexpr (is_same_v<T, cutlass::float_e4m3_t>) {
- run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 128, 12, 3, false, !Is_causal && UseCluster ? 2 : 1, T>, Is_causal, Seqlen_traits>(params, stream);
- } else {
- run_flash_fwd<Flash_fwd_kernel_traits<Headdim, 128, 80, 12, 2, false, UseCluster ? 2 : 1, T>, Is_causal, Seqlen_traits>(params, stream);
- }
- });
- });
- });
- }
|