1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876 |
- import math
- import pytest
- import torch
- import torch.nn.functional as F
- from einops import rearrange, repeat
- from flash_attn import (
- flash_attn_func,
- flash_attn_kvpacked_func,
- flash_attn_qkvpacked_func,
- flash_attn_varlen_func,
- flash_attn_varlen_kvpacked_func,
- flash_attn_varlen_qkvpacked_func,
- flash_attn_with_kvcache,
- )
- from flash_attn.bert_padding import pad_input, unpad_input
- from flash_attn.flash_attn_interface import _get_block_size
- from flash_attn.layers.rotary import apply_rotary_emb
- MAX_HEADDIM_SM8x = 192
- is_sm75 = torch.cuda.get_device_capability("cuda") == (7, 5)
- is_sm8x = torch.cuda.get_device_capability("cuda")[0] == 8
- is_sm80 = torch.cuda.get_device_capability("cuda") == (8, 0)
- is_sm90 = torch.cuda.get_device_capability("cuda") == (9, 0)
- def generate_random_padding_mask(max_seqlen, batch_size, device, mode="random"):
- assert mode in ["full", "random", "third"]
- if mode == "full":
- lengths = torch.full((batch_size, 1), max_seqlen, device=device, dtype=torch.int32)
- elif mode == "random":
- lengths = torch.randint(
- max(1, max_seqlen - 20), max_seqlen + 1, (batch_size, 1), device=device
- )
- elif mode == "third":
- lengths = torch.randint(max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device)
- padding_mask = (
- repeat(torch.arange(max_seqlen, device=device), "s -> b s", b=batch_size) < lengths
- )
- return padding_mask
- def generate_qkv(
- q, k, v, query_padding_mask=None, key_padding_mask=None, kvpacked=False, qkvpacked=False
- ):
- """
- Arguments:
- q: (batch_size, seqlen_q, nheads, d)
- k: (batch_size, seqlen_k, nheads_k, d)
- v: (batch_size, seqlen_k, nheads_k, d)
- query_padding_mask: (batch_size, seqlen), bool
- key_padding_mask: (batch_size, seqlen), bool
- """
- assert not (kvpacked and qkvpacked)
- batch_size, seqlen_q, nheads, d = q.shape
- _, seqlen_k, nheads_k, _ = k.shape
- assert k.shape == (batch_size, seqlen_k, nheads_k, d)
- assert v.shape == (batch_size, seqlen_k, nheads_k, d)
- if query_padding_mask is not None:
- q_unpad, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, query_padding_mask)
- output_pad_fn = lambda output_unpad: pad_input(
- output_unpad, indices_q, batch_size, seqlen_q
- )
- else:
- q_unpad = rearrange(q, "b s h d -> (b s) h d")
- cu_seqlens_q = torch.arange(
- 0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q_unpad.device
- )
- max_seqlen_q = seqlen_q
- output_pad_fn = lambda output_unpad: rearrange(
- output_unpad, "(b s) h d -> b s h d", b=batch_size
- )
- if key_padding_mask is not None:
- k_unpad, indices_k, cu_seqlens_k, max_seqlen_k = unpad_input(k, key_padding_mask)
- v_unpad, _, _, _ = unpad_input(v, key_padding_mask)
- else:
- k_unpad = rearrange(k, "b s h d -> (b s) h d")
- v_unpad = rearrange(v, "b s h d -> (b s) h d")
- cu_seqlens_k = torch.arange(
- 0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=k_unpad.device
- )
- max_seqlen_k = seqlen_k
- if qkvpacked:
- assert (query_padding_mask == key_padding_mask).all()
- assert nheads == nheads_k
- qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1)
- qkv = torch.stack([q, k, v], dim=2)
- if query_padding_mask is not None:
- dqkv_pad_fn = lambda dqkv_unpad: pad_input(dqkv_unpad, indices_q, batch_size, seqlen_q)
- else:
- dqkv_pad_fn = lambda dqkv_unpad: rearrange(
- dqkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
- )
- return (
- qkv_unpad.detach().requires_grad_(),
- cu_seqlens_q,
- max_seqlen_q,
- qkv.detach().requires_grad_(),
- output_pad_fn,
- dqkv_pad_fn,
- )
- elif kvpacked:
- kv_unpad = torch.stack([k_unpad, v_unpad], dim=1)
- kv = torch.stack([k, v], dim=2)
- dq_pad_fn = output_pad_fn
- if key_padding_mask is not None:
- dkv_pad_fn = lambda dkv_unpad: pad_input(dkv_unpad, indices_k, batch_size, seqlen_k)
- else:
- dkv_pad_fn = lambda dkv_unpad: rearrange(
- dkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
- )
- return (
- q_unpad.detach().requires_grad_(),
- kv_unpad.detach().requires_grad_(),
- cu_seqlens_q,
- cu_seqlens_k,
- max_seqlen_q,
- max_seqlen_k,
- q.detach().requires_grad_(),
- kv.detach().requires_grad_(),
- output_pad_fn,
- dq_pad_fn,
- dkv_pad_fn,
- )
- else:
- dq_pad_fn = output_pad_fn
- if key_padding_mask is not None:
- dk_pad_fn = lambda dk_unpad: pad_input(dk_unpad, indices_k, batch_size, seqlen_k)
- else:
- dk_pad_fn = lambda dk_unpad: rearrange(dk_unpad, "(b s) h d -> b s h d", b=batch_size)
- return (
- q_unpad.detach().requires_grad_(),
- k_unpad.detach().requires_grad_(),
- v_unpad.detach().requires_grad_(),
- cu_seqlens_q,
- cu_seqlens_k,
- max_seqlen_q,
- max_seqlen_k,
- q.detach().requires_grad_(),
- k.detach().requires_grad_(),
- v.detach().requires_grad_(),
- output_pad_fn,
- dq_pad_fn,
- dk_pad_fn,
- )
- def construct_causal_mask(
- seqlen_q, seqlen_k, query_padding_mask=None, key_padding_mask=None, device=None
- ):
- row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1")
- col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
- sk = (
- seqlen_k
- if key_padding_mask is None
- else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
- )
- sq = (
- seqlen_q
- if query_padding_mask is None
- else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
- )
- return col_idx > row_idx + sk - sq
- def attention_ref(
- q,
- k,
- v,
- query_padding_mask=None,
- key_padding_mask=None,
- dropout_p=0.0,
- dropout_mask=None,
- causal=False,
- upcast=True,
- reorder_ops=False,
- ):
- """
- Arguments:
- q: (batch_size, seqlen_q, nheads, head_dim)
- k: (batch_size, seqlen_k, nheads_k, head_dim)
- v: (batch_size, seqlen_k, nheads_k, head_dim)
- query_padding_mask: (batch_size, seqlen_q)
- key_padding_mask: (batch_size, seqlen_k)
- dropout_p: float
- dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k)
- upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast
- output back to fp16/bf16.
- reorder_ops: whether to change the order of operations (scaling k instead of scaling k, etc.)
- without changing the math. This is to estimate the numerical error from operation
- reordering.
- Output:
- output: (batch_size, seqlen_q, nheads, head_dim)
- attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout
- """
- dtype_og = q.dtype
- if upcast:
- q, k, v = q.float(), k.float(), v.float()
- seqlen_q, seqlen_k = q.shape[1], k.shape[1]
- k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2])
- v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2])
- d = q.shape[-1]
- if not reorder_ops:
- scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
- else:
- scores = torch.einsum("bthd,bshd->bhts", q, k / math.sqrt(d))
- if key_padding_mask is not None:
- scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
- if causal:
- # causal_mask = torch.triu(
- # torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=q.device), 1
- # )
- causal_mask = construct_causal_mask(
- seqlen_q, seqlen_k, query_padding_mask, key_padding_mask, q.device
- )
- scores.masked_fill_(causal_mask, float("-inf"))
- attention = torch.softmax(scores, dim=-1)
- if causal: # Some rows are completely masked out so we fill them with zero instead of NaN
- attention = attention.masked_fill(torch.all(causal_mask, dim=-1, keepdim=True), 0.0)
- dropout_scaling = 1.0 / (1 - dropout_p)
- # attention_drop = attention.masked_fill(~dropout_mask, 0.0) * dropout_scaling
- # output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
- if dropout_mask is not None:
- attention_drop = attention.masked_fill(~dropout_mask, 0.0)
- else:
- attention_drop = attention
- output = torch.einsum("bhts,bshd->bthd", attention_drop, v * dropout_scaling)
- if query_padding_mask is not None:
- output.masked_fill_(rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0)
- attention = attention.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
- return output.to(dtype=dtype_og), attention.to(dtype=dtype_og)
- def attention_kvpacked_ref(
- q,
- kv,
- query_padding_mask=None,
- key_padding_mask=None,
- dropout_p=0.0,
- dropout_mask=None,
- causal=False,
- upcast=True,
- reorder_ops=False,
- ):
- return attention_ref(
- q,
- kv[:, :, 0],
- kv[:, :, 1],
- query_padding_mask,
- key_padding_mask,
- dropout_p,
- dropout_mask,
- upcast=upcast,
- causal=causal,
- reorder_ops=reorder_ops,
- )
- def attention_qkvpacked_ref(
- qkv,
- key_padding_mask=None,
- dropout_p=0.0,
- dropout_mask=None,
- causal=False,
- upcast=True,
- reorder_ops=False,
- ):
- return attention_ref(
- qkv[:, :, 0],
- qkv[:, :, 1],
- qkv[:, :, 2],
- key_padding_mask,
- key_padding_mask,
- dropout_p,
- dropout_mask,
- upcast=upcast,
- causal=causal,
- reorder_ops=reorder_ops,
- )
- def generate_sparsity_mask(seqlen, sparsity=0.3):
- repeats = seqlen // 16 // 2
- # mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda'),
- # torch.tensor([0, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
- # mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda'),
- # torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
- # mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
- # mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
- nrow, ncol = seqlen // 16, seqlen // 256
- mask = torch.rand(nrow, ncol, device="cuda") < sparsity
- return mask
- def attention_blocksparse_ref(qkv, blockmask, attn_mask, dropout_p, dropout_mask):
- """
- Arguments:
- qkv: (batch_size, seqlen, 3, nheads, head_dim)
- blockmask: (seqlen / 16, seqlen / 256)
- attn_mask: (batch_size, seqlen)
- dropout_p: float
- dropout_mask: (batch_size, nheads, seqlen, seqlen)
- Output:
- output: (batch_size, seqlen, nheads, head_dim)
- attention: softmax after dropout
- """
- q, k, v = qkv.float().unbind(dim=2)
- d = qkv.shape[-1]
- seqlen = qkv.shape[1]
- scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
- scores.masked_fill_(rearrange(~attn_mask, "b s -> b 1 1 s"), float("-inf"))
- blockmask = repeat(blockmask, "s_16 s_256 -> (s_16 16) (s_256 256)")
- blockmask = blockmask[:seqlen, :seqlen]
- scores.masked_fill_(rearrange(~blockmask, "t s -> 1 1 t s"), float("-inf"))
- attention = torch.softmax(scores, dim=-1)
- attention = attention.masked_fill(rearrange(~attn_mask, "b s -> b 1 s 1"), 0.0)
- attention = attention.masked_fill_(rearrange(~blockmask, "t s -> 1 1 t s"), 0.0)
- attention_drop = attention.masked_fill(~dropout_mask, 0.0) / (1 - dropout_p)
- output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
- output.masked_fill_(rearrange(~attn_mask, "b s -> b s 1 1"), 0)
- return output.to(dtype=qkv.dtype), attention.to(dtype=qkv.dtype)
- def convert_flash_attn_S_to_softmax(
- S, seqlen_q, seqlen_k, query_padding_mask, key_padding_mask, head_dim, is_dropout, causal=False
- ):
- """FlashAttention stores the S matrix in a different way.
- Arguments:
- S: (batch_size, nheads, seqlen_q_rounded, seqlen_k_rounded)
- query_padding_mask: (batch_size, seqlen_q_rounded)
- key_padding_mask: (batch_size, seqlen_k_rounded)
- """
- seqlen_q_rounded, seqlen_k_rounded = S.shape[-2:]
- warps_n = 4
- blocksize_m, blocksize_n = _get_block_size(S.device, head_dim, is_dropout, causal)
- nblocks_n = (seqlen_k_rounded + blocksize_n - 1) // blocksize_n
- nblocks_m = (seqlen_q_rounded + blocksize_m - 1) // blocksize_m
- mmas_n = (blocksize_n + 16 - 1) // 16
- S_flat = rearrange(
- S,
- "b h (nblocks_m blocksize_m) (nblocks_n blocksize_n) -> b h nblocks_m nblocks_n (blocksize_m blocksize_n)",
- blocksize_m=blocksize_m,
- blocksize_n=blocksize_n,
- )
- S_converted = rearrange(
- S_flat,
- "b h nblocks_m nblocks_n (mmas_n mmas_m warps_n eight four c2 c1 c0) -> b h (nblocks_m mmas_m warps_n c1 eight) (nblocks_n mmas_n c2 four c0)",
- mmas_n=mmas_n,
- warps_n=warps_n,
- eight=8,
- c0=2,
- c1=2,
- c2=2,
- four=4,
- )
- if causal:
- # causal_mask = torch.triu(
- # torch.ones(seqlen_q_rounded, seqlen_k_rounded, dtype=torch.bool, device=q.device), 1
- # )
- causal_mask = construct_causal_mask(
- seqlen_q, seqlen_k, query_padding_mask, key_padding_mask, S.device
- )
- causal_mask = F.pad(
- causal_mask,
- (0, seqlen_k_rounded - seqlen_k, 0, seqlen_q_rounded - seqlen_q),
- value=True,
- )
- S_converted.masked_fill_(causal_mask, 0.0)
- # Need to zero out things not in attention_mask in case S was initialized with random values
- # and some of those values aren't overwritten.
- seqlen_q_og = (
- query_padding_mask.shape[-1] if query_padding_mask is not None else seqlen_q_rounded
- )
- if query_padding_mask is not None:
- query_padding_mask = F.pad(query_padding_mask, (0, seqlen_q_rounded - seqlen_q_og))
- S_converted = S_converted.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
- seqlen_k_og = key_padding_mask.shape[-1] if key_padding_mask is not None else seqlen_k
- if key_padding_mask is not None:
- key_padding_mask = F.pad(key_padding_mask, (0, seqlen_k_rounded - seqlen_k_og))
- S_converted = S_converted.masked_fill(rearrange(~key_padding_mask, "b s -> b 1 1 s"), 0.0)
- S_converted = F.pad(S_converted, (0, 0, 0, seqlen_q_og - seqlen_q_rounded))
- S_converted = F.pad(S_converted, (0, seqlen_k_og - seqlen_k_rounded))
- return S_converted[:, :, :seqlen_q, :seqlen_k]
- def normalize_flash_attn_S(
- attn_unnorm,
- q,
- k,
- v,
- query_padding_mask=None,
- key_padding_mask=None,
- is_dropout=False,
- causal=False,
- ):
- """
- Arguments:
- q: (batch_size, seqlen_q, nheads, head_dim)
- k, v: (batch_size, seqlen_k, nheads, head_dim)
- key_padding_mask: (batch_size, seqlen_q)
- Output:
- softmax_lse: (batch_size, nheads, seqlen_q)
- softmax_max: (batch_size, nheads, seqlen_q)
- """
- q, k, v = q.float(), k.float(), v.float()
- _, seqlen_q, _, head_dim = q.shape
- seqlen_k = k.shape[1]
- scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(head_dim), k)
- if key_padding_mask is not None:
- scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
- if causal:
- # causal_mask = torch.triu(
- # torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=q.device), 1
- # )
- causal_mask = construct_causal_mask(
- seqlen_q, seqlen_k, query_padding_mask, key_padding_mask, q.device
- )
- scores.masked_fill_(causal_mask, float("-inf"))
- _, block_size_n = _get_block_size(scores.device, head_dim, is_dropout, causal)
- scores_block = scores.split(block_size_n, dim=-1)
- lse_block = torch.stack([torch.logsumexp(s, dim=-1) for s in scores_block], dim=-1)
- lse = torch.logsumexp(lse_block, dim=-1)
- # lse could be -inf (i.e. all values in scores are -inf), and we want to set those to inf
- # so that when we do torch.exp(m - lse), we get 0.0 instead of NaN.
- lse[lse == float("-inf")] = float("inf")
- scores_max_block = torch.stack([torch.amax(s, dim=-1) for s in scores_block], dim=-1)
- cummax_block = torch.cummax(scores_max_block.flip(-1), dim=-1).values.flip(-1).unbind(dim=-1)
- attn_unnorm_block = attn_unnorm.split(block_size_n, dim=-1)
- attn_norm = torch.cat(
- [
- a * rearrange(torch.exp(m - lse), "b h s -> b h s 1")
- for a, m in zip(attn_unnorm_block, cummax_block)
- ],
- dim=-1,
- )
- if query_padding_mask is not None:
- attn_norm.masked_fill_(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
- return attn_norm.to(dtype=attn_unnorm.dtype)
- def get_dropout_fraction(
- dropout_mask, query_padding_mask=None, key_padding_mask=None, causal=False
- ):
- """
- dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k), bool. True means keep, False means drop.
- query_padding_mask: (batch_size, seqlen_q)
- key_padding_mask: (batch_size, seqlen_k)
- """
- batch_size, nheads, seqlen_q, seqlen_k = dropout_mask.shape
- dropped = ~dropout_mask
- if query_padding_mask is not None:
- dropped.masked_fill_(rearrange(~query_padding_mask, "b s -> b 1 s 1"), False)
- if key_padding_mask is not None:
- dropped.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), False)
- if causal:
- # causal_mask = torch.triu(
- # torch.ones(seqlen_q, seqlen_k, dtype=torch.bool, device=dropout_mask.device), 1
- # )
- causal_mask = construct_causal_mask(
- seqlen_q, seqlen_k, query_padding_mask, key_padding_mask, dropout_mask.device
- )
- dropped.masked_fill_(causal_mask, False)
- dropped_total = dropped.sum()
- query_lengths = (
- query_padding_mask.sum(dim=-1)
- if query_padding_mask is not None
- else torch.full((batch_size,), seqlen_q, device=dropout_mask.device)
- )
- key_lengths = (
- key_padding_mask.sum(dim=-1)
- if key_padding_mask is not None
- else torch.full((batch_size,), seqlen_k, device=dropout_mask.device)
- )
- if not causal:
- numel_per_batch = query_lengths * key_lengths
- else:
- numel_per_batch = torch.where(
- key_lengths <= query_lengths,
- key_lengths * (key_lengths + 1) / 2,
- query_lengths * key_lengths - (query_lengths * (query_lengths - 1) / 2),
- )
- return dropped_total / (numel_per_batch.sum() * nheads)
- @pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
- # @pytest.mark.parametrize('dtype', [torch.float16])
- @pytest.mark.parametrize("causal", [False, True])
- # @pytest.mark.parametrize('causal', [True])
- @pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
- # @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
- # @pytest.mark.parametrize('d', [32, 64, 96, 128])
- # @pytest.mark.parametrize('d', [64])
- # @pytest.mark.parametrize('seqlen', [128, 256, 384, 512, 768, 1024, 2048])
- @pytest.mark.parametrize("seqlen", [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048])
- # @pytest.mark.parametrize('seqlen', [97])
- @pytest.mark.parametrize("dropout_p", [0.0, 0.17])
- # @pytest.mark.parametrize('dropout_p', [0.17])
- def test_flash_attn_qkvpacked(seqlen, d, dropout_p, causal, dtype):
- if seqlen >= 2048 and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30:
- pytest.skip() # Reference implementation OOM
- device = "cuda"
- # set seed
- torch.random.manual_seed(0)
- batch_size = 16
- nheads = 9
- qkv = torch.randn(
- batch_size, seqlen, 3, nheads, d, device=device, dtype=dtype, requires_grad=True
- )
- out, lse, S_dmask = flash_attn_qkvpacked_func(
- qkv, dropout_p, return_attn_probs=True, causal=causal
- )
- if dropout_p > 0.0:
- S_dmask_converted = convert_flash_attn_S_to_softmax(
- S_dmask, seqlen, seqlen, None, None, d, dropout_p > 0.0, causal=causal
- )
- dropout_mask = S_dmask_converted >= 0
- attn_unnorm = S_dmask_converted.abs()
- attn = normalize_flash_attn_S(
- attn_unnorm,
- qkv[:, :, 0],
- qkv[:, :, 1],
- qkv[:, :, 2],
- None,
- None,
- dropout_p > 0.0,
- causal=causal,
- )
- dropout_fraction = get_dropout_fraction(dropout_mask, None, None, causal=causal).item()
- print(f"Actual dropout fraction: {dropout_fraction}")
- else:
- dropout_mask = None
- out_ref, attn_ref = attention_qkvpacked_ref(qkv, None, dropout_p, dropout_mask, causal=causal)
- out_pt, attn_pt = attention_qkvpacked_ref(
- qkv, None, dropout_p, dropout_mask, causal=causal, upcast=False, reorder_ops=True
- )
- # v = qkv[:, :, 2].float()
- # qk = torch.einsum('bshd,bthd->bhst', qkv[:, :, 0], qkv[:, :, 1]).float()
- # if causal:
- # causal_mask = torch.triu(torch.ones(seqlen, seqlen, dtype=torch.bool, device=qkv.device), 1)
- # qk.masked_fill_(causal_mask, float('-inf'))
- # m = qk.amax(-1, keepdim=True)
- # s_tmp = torch.exp((qk - m) / math.sqrt(d))
- # p_tmp = torch.softmax(qk / math.sqrt(d), -1)
- # p_dropped = p_tmp if dropout_mask is None else p_tmp.masked_fill(~dropout_mask, 0)
- # lse_ref = torch.logsumexp(qk / math.sqrt(d), -1)
- # qk_max1 = torch.max(qk[:, :, 128:, 192:], -1, keepdim=True).values
- # qk_max2 = torch.max(qk[:, :, 128:, 128:], -1, keepdim=True).values
- # qk_max3 = torch.max(qk[:, :, 128:, 64:], -1, keepdim=True).values
- # qk_max4 = torch.max(qk[:, :, 128:, :], -1, keepdim=True).values
- # o1 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 192:] - qk_max1) / math.sqrt(d)), v[:, 192:])
- # o2 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 128:] - qk_max2) / math.sqrt(d)), v[:, 128:])
- # o3 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 64:] - qk_max3) / math.sqrt(d)), v[:, 64:])
- # o4 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, :] - qk_max4) / math.sqrt(d)), v[:, :])
- print(f"Output max diff: {(out - out_ref).abs().max().item()}")
- print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
- print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
- print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
- if dropout_p > 0.0:
- print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
- print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
- g = torch.randn_like(out)
- # do_o = (g.float() * out.float()).sum(-1)
- # dv_tmp = torch.einsum('bhts,bthd->bshd', attn_pt[:, :, :64], g[:, :64])
- # dv_tmp1 = torch.einsum('bhts,bthd->bshd', attn_pt[:, :, 64:], g[:, 64:])
- if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
- (dqkv,) = torch.autograd.grad(out, qkv, g)
- (dqkv_ref,) = torch.autograd.grad(out_ref, qkv, g)
- (dqkv_pt,) = torch.autograd.grad(out_pt, qkv, g)
- print(f"dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
- print(f"dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
- print(f"dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
- print(f"dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}")
- print(f"dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
- print(f"dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
- print(f"dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
- print(f"dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}")
- # Check that FlashAttention's numerical error is at most twice the numerical error
- # of a Pytorch implementation.
- assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
- if dropout_p > 0.0:
- assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
- assert abs(dropout_fraction - dropout_p) <= 0.01
- if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
- assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item()
- @pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
- # @pytest.mark.parametrize('dtype', [torch.float16])
- @pytest.mark.parametrize("causal", [False, True])
- # @pytest.mark.parametrize('causal', [False])
- @pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
- # @pytest.mark.parametrize('d', [64])
- @pytest.mark.parametrize("seqlen", [97, 128, 200, 256, 257, 384, 512, 768, 1024, 1025, 2048])
- # @pytest.mark.parametrize('seqlen', [128])
- @pytest.mark.parametrize("dropout_p", [0.0, 0.17])
- # @pytest.mark.parametrize('dropout_p', [0.0])
- def test_flash_attn_varlen_qkvpacked(seqlen, d, dropout_p, causal, dtype):
- if seqlen >= 2048 and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30:
- pytest.skip() # Reference implementation OOM
- device = "cuda"
- # set seed
- torch.random.manual_seed(0)
- batch_size = 5
- nheads = 6
- qkv = torch.randn(
- batch_size, seqlen, 3, nheads, d, device=device, dtype=dtype, requires_grad=True
- )
- key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode="random")
- # key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='full')
- qkv_unpad, cu_seqlens, max_seqlen, qkv, output_pad_fn, dqkv_pad_fn = generate_qkv(
- *qkv.unbind(dim=2), key_padding_mask, key_padding_mask, qkvpacked=True
- )
- out_unpad, sm_lse, S_dmask = flash_attn_varlen_qkvpacked_func(
- qkv_unpad, cu_seqlens, max_seqlen, dropout_p, return_attn_probs=True, causal=causal
- )
- out = output_pad_fn(out_unpad)
- if dropout_p > 0.0:
- S_dmask_converted = convert_flash_attn_S_to_softmax(
- S_dmask,
- seqlen,
- seqlen,
- key_padding_mask,
- key_padding_mask,
- d,
- dropout_p > 0.0,
- causal=causal,
- )
- dropout_mask = S_dmask_converted >= 0
- attn_unnorm = S_dmask_converted.abs()
- attn = normalize_flash_attn_S(
- attn_unnorm,
- qkv[:, :, 0],
- qkv[:, :, 1],
- qkv[:, :, 2],
- key_padding_mask,
- key_padding_mask,
- dropout_p > 0.0,
- causal=causal,
- )
- dropout_fraction = get_dropout_fraction(
- dropout_mask, key_padding_mask, key_padding_mask, causal=causal
- ).item()
- print(f"Actual dropout fraction: {dropout_fraction}")
- else:
- dropout_mask = None
- out_ref, attn_ref = attention_qkvpacked_ref(
- qkv, key_padding_mask, dropout_p, dropout_mask, causal=causal
- )
- out_pt, attn_pt = attention_qkvpacked_ref(
- qkv,
- key_padding_mask,
- dropout_p,
- dropout_mask,
- causal=causal,
- upcast=False,
- reorder_ops=True,
- )
- print(f"Output max diff: {(out - out_ref).abs().max().item()}")
- print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
- print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
- print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
- if dropout_p > 0.0:
- print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
- print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
- g = torch.randn_like(out)
- if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
- (dqkv_unpad,) = torch.autograd.grad(out, qkv_unpad, g)
- dqkv = dqkv_pad_fn(dqkv_unpad)
- (dqkv_ref,) = torch.autograd.grad(out_ref, qkv, g)
- (dqkv_pt,) = torch.autograd.grad(out_pt, qkv, g)
- print(f"dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
- print(f"dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
- print(f"dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
- print(f"dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}")
- print(f"dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
- print(f"dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
- print(f"dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
- print(f"dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}")
- # Check that FlashAttention's numerical error is at most twice the numerical error
- # of a Pytorch implementation.
- assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
- if dropout_p > 0.0:
- assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
- assert abs(dropout_fraction - dropout_p) <= 0.01
- if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
- assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item()
- @pytest.mark.parametrize("kvpacked", [True, False])
- # @pytest.mark.parametrize("kvpacked", [False])
- @pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
- # @pytest.mark.parametrize("dtype", [torch.bfloat16])
- @pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
- # @pytest.mark.parametrize("mha_type", ["mha"])
- @pytest.mark.parametrize("causal", [False, True])
- # @pytest.mark.parametrize("causal", [True])
- @pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
- # @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
- # @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
- # @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
- # @pytest.mark.parametrize('d', [56, 80])
- # @pytest.mark.parametrize("d", [64])
- @pytest.mark.parametrize(
- "seqlen_q,seqlen_k",
- [
- (113, 203),
- (128, 217),
- (113, 211),
- (108, 256),
- (256, 512),
- (512, 256),
- (1024, 1024),
- (1023, 1024),
- (1024, 1023),
- (2048, 2048),
- ],
- )
- # @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
- @pytest.mark.parametrize("dropout_p", [0.0, 0.17])
- # @pytest.mark.parametrize("dropout_p", [0.17])
- def test_flash_attn_output(seqlen_q, seqlen_k, d, dropout_p, causal, mha_type, dtype, kvpacked):
- if (
- max(seqlen_q, seqlen_k) >= 2048
- and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
- ):
- pytest.skip() # Reference implementation OOM
- device = "cuda"
- # set seed
- torch.random.manual_seed(0)
- batch_size = 16
- nheads = 9
- nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
- assert nheads % nheads_k == 0
- q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
- if kvpacked:
- kv = torch.randn(
- batch_size, seqlen_k, 2, nheads_k, d, device=device, dtype=dtype, requires_grad=True
- )
- else:
- k = torch.randn(
- batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
- )
- v = torch.randn(
- batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
- )
- if kvpacked:
- out, lse, S_dmask = flash_attn_kvpacked_func(
- q, kv, dropout_p, return_attn_probs=True, causal=causal
- )
- else:
- out, lse, S_dmask = flash_attn_func(
- q, k, v, dropout_p, return_attn_probs=True, causal=causal
- )
- if dropout_p > 0.0:
- S_dmask_converted = convert_flash_attn_S_to_softmax(
- S_dmask, seqlen_q, seqlen_k, None, None, d, dropout_p > 0.0, causal=causal
- )
- dropout_mask = S_dmask_converted >= 0
- attn_unnorm = S_dmask_converted.abs()
- if kvpacked:
- kv_rep = repeat(kv, "b s two h d -> b s two (h g) d", g=nheads // nheads_k)
- k_rep, v_rep = kv_rep.unbind(dim=2)
- else:
- k_rep = repeat(k, "b s h d -> b s (h g) d", g=nheads // nheads_k)
- v_rep = repeat(v, "b s h d -> b s (h g) d", g=nheads // nheads_k)
- attn = normalize_flash_attn_S(
- attn_unnorm, q, k_rep, v_rep, None, None, dropout_p > 0.0, causal=causal
- )
- dropout_fraction = get_dropout_fraction(dropout_mask, None, None, causal=causal).item()
- print(f"Actual dropout fraction: {dropout_fraction}")
- else:
- dropout_mask = None
- if kvpacked:
- out_ref, attn_ref = attention_kvpacked_ref(
- q, kv, None, None, dropout_p, dropout_mask, causal=causal
- )
- out_pt, attn_pt = attention_kvpacked_ref(
- q,
- kv,
- None,
- None,
- dropout_p,
- dropout_mask,
- causal=causal,
- upcast=False,
- reorder_ops=True,
- )
- else:
- out_ref, attn_ref = attention_ref(
- q, k, v, None, None, dropout_p, dropout_mask, causal=causal
- )
- out_pt, attn_pt = attention_ref(
- q,
- k,
- v,
- None,
- None,
- dropout_p,
- dropout_mask,
- causal=causal,
- upcast=False,
- reorder_ops=True,
- )
- print(f"Output max diff: {(out - out_ref).abs().max().item()}")
- print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
- print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
- print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
- if dropout_p > 0.0:
- print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
- print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
- g = torch.randn_like(out)
- do_o = (g.float() * out.float()).sum(-1)
- if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
- if kvpacked:
- (
- dq,
- dkv,
- ) = torch.autograd.grad(out, (q, kv), g)
- dk, dv = dkv.unbind(2)
- (
- dq_ref,
- dkv_ref,
- ) = torch.autograd.grad(out_ref, (q, kv), g)
- dk_ref, dv_ref = dkv_ref.unbind(2)
- (
- dq_pt,
- dkv_pt,
- ) = torch.autograd.grad(out_pt, (q, kv), g)
- dk_pt, dv_pt = dkv_pt.unbind(2)
- else:
- (
- dq,
- dk,
- dv,
- ) = torch.autograd.grad(out, (q, k, v), g)
- (
- dq_ref,
- dk_ref,
- dv_ref,
- ) = torch.autograd.grad(out_ref, (q, k, v), g)
- (
- dq_pt,
- dk_pt,
- dv_pt,
- ) = torch.autograd.grad(out_pt, (q, k, v), g)
- print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
- print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
- print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
- print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
- print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
- print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
- print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
- print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
- print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
- print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
- print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
- print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
- # Check that FlashAttention's numerical error is at most twice the numerical error
- # of a Pytorch implementation.
- assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
- if dropout_p > 0.0:
- assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
- assert abs(dropout_fraction - dropout_p) <= 0.01
- if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
- assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item()
- assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item()
- assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item()
- @pytest.mark.parametrize("kvpacked", [True, False])
- # @pytest.mark.parametrize('kvpacked', [False])
- @pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
- # @pytest.mark.parametrize('dtype', [torch.float16])
- @pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
- # @pytest.mark.parametrize('mha_type', ["mqa"])
- @pytest.mark.parametrize("causal", [False, True])
- # @pytest.mark.parametrize('causal', [True])
- @pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
- # @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
- # @pytest.mark.parametrize('d', [64])
- @pytest.mark.parametrize(
- "seqlen_q,seqlen_k",
- [
- (113, 203),
- (128, 217),
- (113, 211),
- (108, 256),
- (256, 512),
- (512, 256),
- (1024, 1024),
- (1023, 1024),
- (1024, 1023),
- (2048, 2048),
- ],
- )
- # @pytest.mark.parametrize('seqlen_q,seqlen_k', [(128, 128)])
- @pytest.mark.parametrize("dropout_p", [0.0, 0.17])
- # @pytest.mark.parametrize('dropout_p', [0.0])
- def test_flash_attn_varlen_output(
- seqlen_q, seqlen_k, d, dropout_p, causal, mha_type, dtype, kvpacked
- ):
- if (
- max(seqlen_q, seqlen_k) >= 2048
- and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
- ):
- pytest.skip() # Reference implementation OOM
- device = "cuda"
- # set seed
- torch.random.manual_seed(0)
- batch_size = 16
- nheads = 9
- nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
- assert nheads % nheads_k == 0
- q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
- if kvpacked:
- kv = torch.randn(
- batch_size, seqlen_k, 2, nheads_k, d, device=device, dtype=dtype, requires_grad=True
- )
- else:
- k = torch.randn(
- batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
- )
- v = torch.randn(
- batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
- )
- query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
- key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random")
- # key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode='full')
- if kvpacked:
- (
- q_unpad,
- kv_unpad,
- cu_seqlens_q,
- cu_seqlens_k,
- max_seqlen_q,
- max_seqlen_k,
- q,
- kv,
- output_pad_fn,
- dq_pad_fn,
- dkv_pad_fn,
- ) = generate_qkv(q, *kv.unbind(dim=2), query_padding_mask, key_padding_mask, kvpacked=True)
- out_unpad, sm_lse, S_dmask = flash_attn_varlen_kvpacked_func(
- q_unpad,
- kv_unpad,
- cu_seqlens_q,
- cu_seqlens_k,
- max_seqlen_q,
- max_seqlen_k,
- dropout_p,
- return_attn_probs=True,
- causal=causal,
- )
- else:
- (
- q_unpad,
- k_unpad,
- v_unpad,
- cu_seqlens_q,
- cu_seqlens_k,
- max_seqlen_q,
- max_seqlen_k,
- q,
- k,
- v,
- output_pad_fn,
- dq_pad_fn,
- dk_pad_fn,
- ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
- out_unpad, sm_lse, S_dmask = flash_attn_varlen_func(
- q_unpad,
- k_unpad,
- v_unpad,
- cu_seqlens_q,
- cu_seqlens_k,
- max_seqlen_q,
- max_seqlen_k,
- dropout_p,
- return_attn_probs=True,
- causal=causal,
- )
- out = output_pad_fn(out_unpad)
- if dropout_p > 0.0:
- S_dmask_converted = convert_flash_attn_S_to_softmax(
- S_dmask,
- seqlen_q,
- seqlen_k,
- query_padding_mask,
- key_padding_mask,
- d,
- dropout_p > 0.0,
- causal=causal,
- )
- dropout_mask = S_dmask_converted >= 0
- attn_unnorm = S_dmask_converted.abs()
- if kvpacked:
- kv_rep = repeat(kv, "b s two h d -> b s two (h g) d", g=nheads // nheads_k)
- k_rep, v_rep = kv_rep.unbind(dim=2)
- else:
- k_rep = repeat(k, "b s h d -> b s (h g) d", g=nheads // nheads_k)
- v_rep = repeat(v, "b s h d -> b s (h g) d", g=nheads // nheads_k)
- attn = normalize_flash_attn_S(
- attn_unnorm,
- q,
- k_rep,
- v_rep,
- query_padding_mask,
- key_padding_mask,
- dropout_p > 0.0,
- causal=causal,
- )
- dropout_fraction = get_dropout_fraction(
- dropout_mask, query_padding_mask, key_padding_mask, causal=causal
- ).item()
- print(f"Actual dropout fraction: {dropout_fraction}")
- else:
- dropout_mask = None
- if kvpacked:
- out_ref, attn_ref = attention_kvpacked_ref(
- q, kv, query_padding_mask, key_padding_mask, dropout_p, dropout_mask, causal=causal
- )
- out_pt, attn_pt = attention_kvpacked_ref(
- q,
- kv,
- query_padding_mask,
- key_padding_mask,
- dropout_p,
- dropout_mask,
- causal=causal,
- upcast=False,
- reorder_ops=True,
- )
- else:
- out_ref, attn_ref = attention_ref(
- q, k, v, query_padding_mask, key_padding_mask, dropout_p, dropout_mask, causal=causal
- )
- out_pt, attn_pt = attention_ref(
- q,
- k,
- v,
- query_padding_mask,
- key_padding_mask,
- dropout_p,
- dropout_mask,
- causal=causal,
- upcast=False,
- reorder_ops=True,
- )
- print(f"Output max diff: {(out - out_ref).abs().max().item()}")
- print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
- print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
- print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
- if dropout_p > 0.0:
- print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
- print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
- g = torch.randn_like(out)
- if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
- if kvpacked:
- (
- dq_unpad,
- dkv_unpad,
- ) = torch.autograd.grad(out, (q_unpad, kv_unpad), g)
- dk, dv = dkv_pad_fn(dkv_unpad).unbind(2)
- (
- dq_ref,
- dkv_ref,
- ) = torch.autograd.grad(out_ref, (q, kv), g)
- dk_ref, dv_ref = dkv_ref.unbind(2)
- (
- dq_pt,
- dkv_pt,
- ) = torch.autograd.grad(out_pt, (q, kv), g)
- dk_pt, dv_pt = dkv_pt.unbind(2)
- else:
- (
- dq_unpad,
- dk_unpad,
- dv_unpad,
- ) = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g)
- dk = dk_pad_fn(dk_unpad)
- dv = dk_pad_fn(dv_unpad)
- (
- dq_ref,
- dk_ref,
- dv_ref,
- ) = torch.autograd.grad(out_ref, (q, k, v), g)
- (
- dq_pt,
- dk_pt,
- dv_pt,
- ) = torch.autograd.grad(out_pt, (q, k, v), g)
- dq = dq_pad_fn(dq_unpad)
- print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
- print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
- print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
- print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
- print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
- print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
- print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
- print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
- print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
- print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
- print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
- print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
- # Check that FlashAttention's numerical error is at most twice the numerical error
- # of a Pytorch implementation.
- assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
- if dropout_p > 0.0:
- assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
- assert abs(dropout_fraction - dropout_p) <= 0.01
- if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
- assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item()
- assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item()
- assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item()
- @pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
- # @pytest.mark.parametrize("dtype", [torch.bfloat16])
- @pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
- # @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
- # @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
- # @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
- # @pytest.mark.parametrize('d', [56, 80])
- # @pytest.mark.parametrize("d", [64, 128])
- @pytest.mark.parametrize("swap_sq_sk", [False, True])
- # @pytest.mark.parametrize("swap_sq_sk", [True])
- @pytest.mark.parametrize(
- "seqlen_q,seqlen_k",
- [
- (1, 239),
- (3, 799),
- (127, 512),
- (127, 513),
- (113, 203),
- (128, 217),
- (113, 211),
- (108, 256),
- (256, 512),
- (1023, 1024),
- ],
- )
- # @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
- def test_flash_attn_causal(seqlen_q, seqlen_k, swap_sq_sk, d, dtype):
- if (
- max(seqlen_q, seqlen_k) >= 2048
- and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
- ):
- pytest.skip() # Reference implementation OOM
- if swap_sq_sk:
- seqlen_q, seqlen_k = seqlen_k, seqlen_q
- device = "cuda"
- causal = True
- # set seed
- torch.random.manual_seed(0)
- batch_size = 16
- nheads = 9
- q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
- k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
- v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
- out = flash_attn_func(q, k, v, 0.0, causal=causal)
- out_ref, attn_ref = attention_ref(q, k, v, None, None, 0.0, None, causal=causal)
- out_pt, attn_pt = attention_ref(
- q,
- k,
- v,
- None,
- None,
- 0.0,
- None,
- causal=causal,
- upcast=False,
- reorder_ops=True,
- )
- print(f"Output max diff: {(out - out_ref).abs().max().item()}")
- print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
- print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
- print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
- g = torch.randn_like(out)
- do_o = (g.float() * out.float()).sum(-1)
- if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
- (
- dq,
- dk,
- dv,
- ) = torch.autograd.grad(out, (q, k, v), g)
- (
- dq_ref,
- dk_ref,
- dv_ref,
- ) = torch.autograd.grad(out_ref, (q, k, v), g)
- (
- dq_pt,
- dk_pt,
- dv_pt,
- ) = torch.autograd.grad(out_pt, (q, k, v), g)
- print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
- print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
- print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
- print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
- print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
- print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
- print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
- print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
- print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
- print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
- print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
- print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
- # Check that FlashAttention's numerical error is at most twice the numerical error
- # of a Pytorch implementation.
- assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + 1e-5
- if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
- assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() + 1e-5
- assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item() + 1e-5
- assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item() + 1e-5
- @pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
- # @pytest.mark.parametrize("dtype", [torch.bfloat16])
- @pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
- # @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
- # @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
- # @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
- # @pytest.mark.parametrize('d', [56, 80])
- # @pytest.mark.parametrize("d", [128])
- @pytest.mark.parametrize("swap_sq_sk", [False, True])
- # @pytest.mark.parametrize("swap_sq_sk", [True])
- @pytest.mark.parametrize(
- "seqlen_q,seqlen_k",
- [
- (1, 239),
- (3, 799),
- (127, 512),
- (127, 513),
- (113, 203),
- (128, 217),
- (113, 211),
- (108, 256),
- (256, 512),
- (1023, 1024),
- ],
- )
- # @pytest.mark.parametrize("seqlen_q,seqlen_k", [(256, 128)])
- def test_flash_attn_varlen_causal(seqlen_q, seqlen_k, swap_sq_sk, d, dtype):
- if (
- max(seqlen_q, seqlen_k) >= 2048
- and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
- ):
- pytest.skip() # Reference implementation OOM
- if swap_sq_sk:
- seqlen_q, seqlen_k = seqlen_k, seqlen_q
- device = "cuda"
- causal = True
- # set seed
- torch.random.manual_seed(0)
- batch_size = 16
- nheads = 9
- q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
- k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
- v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
- query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
- key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random")
- (
- q_unpad,
- k_unpad,
- v_unpad,
- cu_seqlens_q,
- cu_seqlens_k,
- max_seqlen_q,
- max_seqlen_k,
- q,
- k,
- v,
- output_pad_fn,
- dq_pad_fn,
- dk_pad_fn,
- ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
- out_unpad = flash_attn_varlen_func(
- q_unpad,
- k_unpad,
- v_unpad,
- cu_seqlens_q,
- cu_seqlens_k,
- max_seqlen_q,
- max_seqlen_k,
- 0.0,
- causal=causal,
- )
- out = output_pad_fn(out_unpad)
- out_ref, attn_ref = attention_ref(
- q, k, v, query_padding_mask, key_padding_mask, 0.0, None, causal=causal
- )
- out_pt, attn_pt = attention_ref(
- q,
- k,
- v,
- query_padding_mask,
- key_padding_mask,
- 0.0,
- None,
- causal=causal,
- upcast=False,
- reorder_ops=True,
- )
- print(f"Output max diff: {(out - out_ref).abs().max().item()}")
- print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
- print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
- print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
- g = torch.randn_like(out)
- do_o = (g.float() * out.float()).sum(-1)
- if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
- (
- dq_unpad,
- dk_unpad,
- dv_unpad,
- ) = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g)
- dq = dq_pad_fn(dq_unpad)
- dk = dk_pad_fn(dk_unpad)
- dv = dk_pad_fn(dv_unpad)
- (
- dq_ref,
- dk_ref,
- dv_ref,
- ) = torch.autograd.grad(out_ref, (q, k, v), g)
- (
- dq_pt,
- dk_pt,
- dv_pt,
- ) = torch.autograd.grad(out_pt, (q, k, v), g)
- print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
- print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
- print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
- print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
- print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
- print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
- print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
- print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
- print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
- print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
- print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
- print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
- # Check that FlashAttention's numerical error is at most twice the numerical error
- # of a Pytorch implementation.
- assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + 1e-5
- if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
- assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() + 1e-5
- assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item() + 1e-5
- assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item() + 1e-5
- @pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
- # @pytest.mark.parametrize("dtype", [torch.float16])
- @pytest.mark.parametrize("causal", [False, True])
- # @pytest.mark.parametrize("causal", [True])
- @pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
- # @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
- # @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
- # @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
- # @pytest.mark.parametrize('d', [56, 80])
- # @pytest.mark.parametrize("d", [64])
- @pytest.mark.parametrize("swap_sq_sk", [False, True])
- # @pytest.mark.parametrize("swap_sq_sk", [False])
- @pytest.mark.parametrize(
- "seqlen_q,seqlen_k",
- [
- (3, 1024),
- (1, 339),
- (64, 800),
- (3, 799),
- (64, 2048),
- (16, 20000),
- (16, 100000),
- (128, 128),
- (256, 256),
- ],
- )
- # @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
- def test_flash_attn_splitkv(seqlen_q, seqlen_k, swap_sq_sk, d, causal, dtype):
- if swap_sq_sk:
- seqlen_q, seqlen_k = seqlen_k, seqlen_q
- device = "cuda"
- # set seed
- torch.random.manual_seed(0)
- batch_size = 1
- nheads = 12
- q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
- k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
- v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
- out, lse, _ = flash_attn_func(q, k, v, 0.0, causal=causal, return_attn_probs=True)
- out_ref, attn_ref = attention_ref(q, k, v, None, None, 0.0, None, causal=causal)
- out_pt, attn_pt = attention_ref(
- q,
- k,
- v,
- None,
- None,
- 0.0,
- None,
- causal=causal,
- upcast=False,
- reorder_ops=True,
- )
- print(f"Output max diff: {(out - out_ref).abs().max().item()}")
- print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
- print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
- print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
- g = torch.randn_like(out)
- do_o = (g.float() * out.float()).sum(-1)
- if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
- (
- dq,
- dk,
- dv,
- ) = torch.autograd.grad(out, (q, k, v), g)
- (
- dq_ref,
- dk_ref,
- dv_ref,
- ) = torch.autograd.grad(out_ref, (q, k, v), g)
- (
- dq_pt,
- dk_pt,
- dv_pt,
- ) = torch.autograd.grad(out_pt, (q, k, v), g)
- print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
- print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
- print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
- print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
- print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
- print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
- print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
- print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
- print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
- print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
- print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
- print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
- # Check that FlashAttention's numerical error is at most twice the numerical error
- # of a Pytorch implementation.
- assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + 1e-5
- if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
- assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() + 2e-4
- assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item() + 2e-4
- assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item() + 2e-4
- @pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
- # @pytest.mark.parametrize("dtype", [torch.float16])
- @pytest.mark.parametrize("num_splits", [1, 0])
- # @pytest.mark.parametrize("num_splits", [0])
- @pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
- # @pytest.mark.parametrize("mha_type", ["mha"])
- @pytest.mark.parametrize("new_kv", [False, True])
- # @pytest.mark.parametrize("new_kv", [True])
- @pytest.mark.parametrize("causal", [False, True])
- # @pytest.mark.parametrize("causal", [True])
- @pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True, False])
- # @pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True])
- @pytest.mark.parametrize("rotary_interleaved", [False, True])
- # @pytest.mark.parametrize("rotary_interleaved", [False])
- @pytest.mark.parametrize("rotary_fraction", [0.0, 0.5, 1.0])
- # @pytest.mark.parametrize("rotary_fraction", [1.0])
- @pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
- # @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
- # @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
- # @pytest.mark.parametrize('d', [56, 80])
- # @pytest.mark.parametrize("d", [64])
- @pytest.mark.parametrize(
- "seqlen_q,seqlen_k",
- [
- (1, 128),
- (1, 339),
- (3, 1024),
- (64, 800),
- (64, 256),
- (3, 799),
- (64, 2048),
- (16, 20000),
- (1, 128 * 1024),
- (16, 128 * 1024),
- (128, 128),
- ],
- )
- # @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
- def test_flash_attn_kvcache(
- seqlen_q,
- seqlen_k,
- d,
- rotary_fraction,
- rotary_interleaved,
- seqlen_new_eq_seqlen_q,
- causal,
- new_kv,
- mha_type,
- num_splits,
- dtype,
- ):
- if seqlen_q > seqlen_k and new_kv:
- pytest.skip()
- if not new_kv and rotary_fraction > 0.0:
- pytest.skip()
- device = "cuda"
- # set seed
- torch.random.manual_seed(0)
- batch_size = 2
- nheads = 6
- # rotary_dim must be a multiple of 16, and must be <= d
- rotary_dim = math.floor(int(rotary_fraction * d) / 16) * 16
- nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
- assert nheads % nheads_k == 0
- q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype)
- seqlen_new = seqlen_q if seqlen_new_eq_seqlen_q else torch.randint(1, seqlen_q + 1, (1,)).item()
- if new_kv:
- k = torch.randn(batch_size, seqlen_new, nheads_k, d, device=device, dtype=dtype)
- v = torch.randn(batch_size, seqlen_new, nheads_k, d, device=device, dtype=dtype)
- else:
- k, v = None, None
- k_cache = torch.randn(batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype)
- v_cache = torch.randn(batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype)
- cache_seqlens = torch.randint(
- 0,
- # If we don't use seqlen_q in the case of causal and rotary, cos/sin won't be long enough
- (seqlen_k - (seqlen_q if causal and rotary_dim > 1 else seqlen_new) + 1)
- if new_kv
- else (seqlen_k + 1),
- (batch_size,),
- dtype=torch.int32,
- device=device,
- )
- # cache_seqlens = torch.tensor([64], dtype=torch.int32, device=device)
- if rotary_dim > 0:
- angle = torch.rand(seqlen_k, rotary_dim // 2, device=device) * 2 * math.pi
- cos = torch.cos(angle).to(dtype=dtype)
- sin = torch.sin(angle).to(dtype=dtype)
- if causal:
- q_ro = apply_rotary_emb(
- q, cos, sin, seqlen_offsets=cache_seqlens, interleaved=rotary_interleaved
- )
- else:
- q_ro = rearrange(
- apply_rotary_emb(
- rearrange(q, "b s h d -> b 1 (s h) d"),
- cos,
- sin,
- seqlen_offsets=cache_seqlens,
- interleaved=rotary_interleaved,
- ),
- "b 1 (s h) d -> b s h d",
- s=seqlen_q,
- )
- # q_ro = q
- k_ro = apply_rotary_emb(
- k, cos, sin, seqlen_offsets=cache_seqlens, interleaved=rotary_interleaved
- )
- else:
- cos, sin = None, None
- q_ro, k_ro = q, k
- # k_cache[:, 64:] = -1
- k_cache_ref = k_cache.clone()
- v_cache_ref = v_cache.clone()
- arange = rearrange(torch.arange(seqlen_k, device=device), "s -> 1 s")
- cache_seqlens_expanded = rearrange(cache_seqlens, "b -> b 1")
- if new_kv:
- update_mask = torch.logical_and(
- cache_seqlens_expanded <= arange, arange < cache_seqlens_expanded + seqlen_new
- )
- k_cache_ref[update_mask] = rearrange(k_ro, "b s ... -> (b s) ...")
- v_cache_ref[update_mask] = rearrange(v, "b s ... -> (b s) ...")
- k_cache_rep = repeat(k_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k)
- v_cache_rep = repeat(v_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k)
- out = flash_attn_with_kvcache(
- q,
- k_cache,
- v_cache,
- k,
- v,
- cos,
- sin,
- cache_seqlens,
- causal=causal,
- rotary_interleaved=rotary_interleaved,
- num_splits=num_splits,
- )
- # out = flash_attn_with_kvcache(q, k_cache, v_cache, cache_seqlens=cache_seqlens, causal=causal)
- # out = flash_attn_with_kvcache(q, k_cache, v_cache, causal=causal)
- # qk = torch.einsum("bqhd,bkhd->bhqk", q, k_cache_ref)
- # m = qk.amax(-1, keepdim=True)
- # s_tmp = torch.exp((qk - m) / math.sqrt(d))
- # o1 = torch.einsum('bhst,bthd->bshd', s_tmp, v_cache_ref)
- # lse_ref = torch.logsumexp(qk / math.sqrt(d), -1)
- # probs = torch.softmax(qk, dim=-1)
- key_padding_mask = arange < cache_seqlens_expanded + (seqlen_new if new_kv else 0)
- out_ref, _ = attention_ref(
- q_ro, k_cache_rep, v_cache_rep, None, key_padding_mask, 0.0, None, causal=causal
- )
- out_pt, _ = attention_ref(
- q_ro,
- k_cache_rep,
- v_cache_rep,
- None,
- key_padding_mask,
- 0.0,
- None,
- causal=causal,
- upcast=False,
- reorder_ops=True,
- )
- print(f"Output max diff: {(out - out_ref).abs().max().item()}")
- print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
- print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
- print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
- # Check that FlashAttention's numerical error is at most twice the numerical error
- # of a Pytorch implementation.
- if new_kv:
- assert torch.allclose(k_cache, k_cache_ref, rtol=1e-3, atol=1e-3)
- assert torch.equal(v_cache, v_cache_ref)
- assert (out - out_ref).abs().max().item() <= 3 * (out_pt - out_ref).abs().max().item() + 1e-5
- # @pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
- @pytest.mark.parametrize("dtype", [torch.float16])
- @pytest.mark.parametrize("causal", [False, True])
- # @pytest.mark.parametrize('causal', [True])
- @pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
- # @pytest.mark.parametrize('d', [32, 56, 64, 80, 96, 128])
- # @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192])
- # @pytest.mark.parametrize('d', [128])
- @pytest.mark.parametrize(
- "seqlen_q,seqlen_k",
- [
- (1, 239),
- (239, 1),
- (3, 799),
- (799, 3),
- (1024, 128),
- (97, 97),
- (128, 128),
- (200, 200),
- (256, 256),
- (257, 257),
- (384, 384),
- (512, 512),
- (768, 768),
- (1024, 1024),
- ],
- )
- @pytest.mark.parametrize("dropout_p", [0.0, 0.17])
- # @pytest.mark.parametrize("dropout_p", [0.0])
- def test_flash_attn_race_condition(seqlen_q, seqlen_k, d, dropout_p, causal, dtype):
- device = "cuda"
- # set seed
- torch.random.manual_seed(0)
- batch_size = 60 # Sometimes we need large batch size for the race conditions to trigger
- nheads = 4
- q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
- k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
- v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
- torch.random.manual_seed(42)
- out0, lse0, _ = flash_attn_func(q, k, v, dropout_p, causal=causal, return_attn_probs=True)
- g = torch.randn_like(out0)
- if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
- (
- dq0,
- dk0,
- dv0,
- ) = torch.autograd.grad(out0, (q, k, v), g)
- # Numerical error if we just do any arithmetic on dq
- dq_atol = 2 * ((dq0 + 0.3 - 0.3) - dq0).abs().max().item()
- for i in range(250):
- torch.random.manual_seed(42)
- out, lse, _ = flash_attn_func(q, k, v, dropout_p, causal=causal, return_attn_probs=True)
- assert torch.equal(out, out0)
- assert torch.equal(lse, lse0)
- if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
- (
- dq,
- dk,
- dv,
- ) = torch.autograd.grad(out, (q, k, v), g)
- dq_equal = torch.allclose(dq, dq0, atol=dq_atol)
- if not dq_equal:
- print(f"Iter {i}, {dq_atol = }, dQ max diff: {(dq - dq0).abs().max().item()}")
- assert torch.equal(dv, dv0)
- assert torch.equal(dk, dk0)
- assert dq_equal
- @pytest.mark.parametrize("dtype", [torch.float16])
- @pytest.mark.parametrize("causal", [False, True])
- # @pytest.mark.parametrize('causal', [False])
- @pytest.mark.parametrize("d", [16, 32, 64])
- # @pytest.mark.parametrize('d', [16])
- @pytest.mark.parametrize("seqlen", [1, 2, 5, 17, 128])
- # @pytest.mark.parametrize('seqlen', [2])
- def test_flash_attn_bwd_overflow(seqlen, d, causal, dtype):
- """We previously had a bug where not masking elements beyond seqlen_k caused NaN in dQ,
- in the case where seqlen % 128 != 0.
- """
- device = "cuda"
- # set seed
- torch.random.manual_seed(0)
- batch_size = 2
- nheads = 5
- q = torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda") * 5
- k, v = [
- torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda") * 3
- for _ in range(2)
- ]
- q.requires_grad_(True)
- k.requires_grad_(True)
- v.requires_grad_(True)
- out = flash_attn_func(q, k, v, causal=causal)
- g = torch.randn_like(out)
- out.backward(g)
- q_pt = q.detach().clone().requires_grad_(True)
- k_pt = k.detach().clone().requires_grad_(True)
- v_pt = v.detach().clone().requires_grad_(True)
- out_pt, _ = attention_ref(q_pt, k_pt, v_pt, causal=causal, upcast=False, reorder_ops=True)
- out_pt.backward(g)
- q_ref = q.detach().clone().requires_grad_(True)
- k_ref = k.detach().clone().requires_grad_(True)
- v_ref = v.detach().clone().requires_grad_(True)
- out_ref, attn_ref = attention_ref(q_ref, k_ref, v_ref, causal=causal)
- out_ref.backward(g)
- print(f"dQ max diff: {(q.grad - q_ref.grad).abs().max().item()}")
- print(f"dK max diff: {(k.grad - k_ref.grad).abs().max().item()}")
- print(f"dV max diff: {(v.grad - v_ref.grad).abs().max().item()}")
- print(f"dQ Pytorch max diff: {(q_pt.grad - q_ref.grad).abs().max().item()}")
- print(f"dK Pytorch max diff: {(k_pt.grad - k_ref.grad).abs().max().item()}")
- print(f"dV Pytorch max diff: {(v_pt.grad - v_ref.grad).abs().max().item()}")
- assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
- assert (q.grad - q_ref.grad).abs().max().item() <= 5 * (
- q_pt.grad - q_ref.grad
- ).abs().max().item() + 1e-3
- assert (k.grad - k_ref.grad).abs().max().item() <= 5 * (
- k_pt.grad - k_ref.grad
- ).abs().max().item() + 1e-3
- assert (v.grad - v_ref.grad).abs().max().item() <= 5 * (
- v_pt.grad - v_ref.grad
- ).abs().max().item() + 1e-3
- @pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
- # @pytest.mark.parametrize('dtype', [torch.bfloat16])
- @pytest.mark.parametrize("causal", [False, True])
- # @pytest.mark.parametrize('causal', [False])
- @pytest.mark.parametrize("d", [64, 128])
- # @pytest.mark.parametrize('d', [64])
- @pytest.mark.parametrize("seqlen", [97, 128, 200, 256])
- # @pytest.mark.parametrize('seqlen', [128])
- def test_flash_attn_bwd_transpose(seqlen, d, causal, dtype):
- """We previously had a bug where we were using the wrong strides of dout, which shows up
- when dout is not contiguous.
- """
- device = "cuda"
- # set seed
- torch.random.manual_seed(0)
- batch_size = 5
- nheads = 2
- q, k, v = [
- torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda", requires_grad=True)
- for _ in range(3)
- ]
- out = rearrange(flash_attn_func(q, k, v, causal=causal), "b s ... -> s b ...")
- # So g is not contiguous
- g = torch.randn(seqlen, 2 * batch_size, nheads, d, dtype=dtype, device="cuda")[:, ::2]
- out.backward(g)
- q_pt = q.detach().clone().requires_grad_(True)
- k_pt = k.detach().clone().requires_grad_(True)
- v_pt = v.detach().clone().requires_grad_(True)
- out_pt, attn_pt = attention_ref(q_pt, k_pt, v_pt, causal=causal, upcast=False, reorder_ops=True)
- out_pt = rearrange(out_pt, "b s ... -> s b ...")
- out_pt.backward(g)
- q_ref = q.detach().clone().requires_grad_(True)
- k_ref = k.detach().clone().requires_grad_(True)
- v_ref = v.detach().clone().requires_grad_(True)
- out_ref, attn_ref = attention_ref(q_ref, k_ref, v_ref, causal=causal)
- out_ref = rearrange(out_ref, "b s ... -> s b ...")
- out_ref.backward(g)
- print(f"dQ max diff: {(q.grad - q_ref.grad).abs().max().item()}")
- print(f"dK max diff: {(k.grad - k_ref.grad).abs().max().item()}")
- print(f"dV max diff: {(v.grad - v_ref.grad).abs().max().item()}")
- print(f"dQ Pytorch max diff: {(q_pt.grad - q_ref.grad).abs().max().item()}")
- print(f"dK Pytorch max diff: {(k_pt.grad - k_ref.grad).abs().max().item()}")
- print(f"dV Pytorch max diff: {(v_pt.grad - v_ref.grad).abs().max().item()}")
- assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
- assert (q.grad - q_ref.grad).abs().max().item() <= 2 * (
- q_pt.grad - q_ref.grad
- ).abs().max().item()
- assert (k.grad - k_ref.grad).abs().max().item() <= 2 * (
- k_pt.grad - k_ref.grad
- ).abs().max().item()
- assert (v.grad - v_ref.grad).abs().max().item() <= 2 * (
- v_pt.grad - v_ref.grad
- ).abs().max().item()
- @pytest.mark.parametrize("dtype", [torch.float16])
- @pytest.mark.parametrize("causal", [False, True])
- # @pytest.mark.parametrize('causal', [False])
- @pytest.mark.parametrize("d", [16, 32, 64])
- # @pytest.mark.parametrize('d', [16])
- def test_flash_attn_bwd_varlen_overflow(d, causal, dtype):
- """We previously had a bug where not masking elements beyond seqlen_k caused NaN in dQ,
- in the case where seqlen % 128 != 0 or varlen.
- """
- device = "cuda"
- # set seed
- torch.random.manual_seed(0)
- nheads = 5
- q_cuseqlen = torch.tensor([0, 76, 110, 256], device=device, dtype=torch.int32)
- k_cuseqlen = torch.tensor([0, 1, 2, 3], device=device, dtype=torch.int32)
- Mq = 256
- Mk = 3
- q = torch.randn([Mq, nheads, d], dtype=dtype, device=device) * 3
- k, v = [torch.randn([Mk, nheads, d], dtype=dtype, device=device) * 3 for _ in range(2)]
- q.requires_grad_(True)
- k.requires_grad_(True)
- v.requires_grad_(True)
- out = flash_attn_varlen_func(q, k, v, q_cuseqlen, k_cuseqlen, Mq, Mk, causal=causal)
- g = torch.randn_like(out)
- out.backward(g)
- assert not q.grad.isnan().any()
- assert not k.grad.isnan().any()
- assert not v.grad.isnan().any()
|