123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659 |
- # Copyright (c) 2023, Tri Dao.
- from typing import Optional, Union
- import torch
- import torch.nn as nn
- # isort: off
- # We need to import the CUDA kernels after importing torch
- import flashattn_hopper_cuda
- # isort: on
- def maybe_contiguous(x):
- return x.contiguous() if x is not None and x.stride(-1) != 1 else x
- def _flash_attn_forward(
- q,
- k,
- v,
- softmax_scale,
- causal,
- window_size,
- descale_q = None,
- descale_k = None,
- descale_v = None,
- gqa_parallel=False
- ):
- q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
- out, q, k, v, out_padded, softmax_lse, S_dmask = flashattn_hopper_cuda.fwd(
- q,
- k,
- v,
- None,
- softmax_scale,
- descale_q,
- descale_k,
- descale_v,
- causal,
- window_size[0],
- window_size[1],
- gqa_parallel
- )
- return out, q, k, v, out_padded, softmax_lse, S_dmask
- def _flash_attn_backward(
- dout,
- q,
- k,
- v,
- out,
- softmax_lse,
- dq,
- dk,
- dv,
- softmax_scale,
- causal,
- window_size,
- deterministic=False
- ):
- # dq, dk, dv are allocated by us so they should already be contiguous
- dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)]
- dq, dk, dv, softmax_d, *rest = flashattn_hopper_cuda.bwd(
- dout,
- q,
- k,
- v,
- out,
- softmax_lse,
- dq,
- dk,
- dv,
- softmax_scale,
- causal,
- window_size[0],
- window_size[1],
- deterministic,
- )
- return dq, dk, dv, softmax_d
- def _flash_attn_varlen_forward(
- q,
- k,
- v,
- cu_seqlens_q,
- cu_seqlens_k,
- max_seqlen_q,
- max_seqlen_k,
- softmax_scale,
- causal,
- window_size=(-1, -1),
- seqused_q=None,
- seqused_k=None,
- descale_q=None,
- descale_k=None,
- descale_v=None,
- ):
- maybe_contiguous = lambda x: x.contiguous() if x.stride(-1) != 1 else x
- q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
- out, q, k, v, out_padded, softmax_lse = flashattn_hopper_cuda.varlen_fwd(
- q,
- k,
- v,
- None,
- cu_seqlens_q,
- cu_seqlens_k,
- seqused_q,
- seqused_k,
- max_seqlen_q,
- max_seqlen_k,
- softmax_scale,
- descale_q,
- descale_k,
- descale_v,
- causal,
- window_size[0],
- window_size[1],
- )
- # if out.isnan().any() or softmax_lse.isnan().any():
- # breakpoint()
- return out, q, k, v, out_padded, softmax_lse
- def _flash_attn_varlen_backward(
- dout,
- q,
- k,
- v,
- out,
- softmax_lse,
- dq,
- dk,
- dv,
- cu_seqlens_q,
- cu_seqlens_k,
- max_seqlen_q,
- max_seqlen_k,
- softmax_scale,
- causal,
- window_size,
- deterministic=False,
- seqused_q=None,
- seqused_k=None,
- ):
- maybe_contiguous = lambda x: x.contiguous() if x.stride(-1) != 1 else x
- # dq, dk, dv are allocated by us so they should already be contiguous
- dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)]
- (
- dq,
- dk,
- dv,
- softmax_d,
- *rest,
- ) = flashattn_hopper_cuda.varlen_bwd(
- dout,
- q,
- k,
- v,
- out,
- softmax_lse,
- dq,
- dk,
- dv,
- cu_seqlens_q,
- cu_seqlens_k,
- seqused_q,
- seqused_k,
- max_seqlen_q,
- max_seqlen_k,
- softmax_scale,
- causal,
- window_size[0],
- window_size[1],
- deterministic,
- )
- # if dk.isnan().any() or dk.isnan().any() or dv.isnan().any() or softmax_d.isnan().any():
- # breakpoint()
- return dq, dk, dv, softmax_d
- class FlashAttnFunc(torch.autograd.Function):
- @staticmethod
- def forward(
- ctx,
- q,
- k,
- v,
- softmax_scale,
- causal,
- window_size,
- deterministic=False,
- descale_q=None,
- descale_k=None,
- descale_v=None,
- gqa_parallel=False,
- ):
- if softmax_scale is None:
- softmax_scale = q.shape[-1] ** (-0.5)
- out, q, k, v, out_padded, softmax_lse, S_dmask = _flash_attn_forward(
- q,
- k,
- v,
- softmax_scale,
- causal,
- window_size,
- descale_q=descale_q,
- descale_k=descale_k,
- descale_v=descale_v,
- gqa_parallel=gqa_parallel,
- )
- ctx.save_for_backward(q, k, v, out_padded, softmax_lse)
- ctx.softmax_scale = softmax_scale
- ctx.causal = causal
- ctx.window_size = window_size
- ctx.deterministic = deterministic
- ctx.gqa_parallel = gqa_parallel
- return out, softmax_lse
- @staticmethod
- def backward(ctx, dout, *args):
- q, k, v, out, softmax_lse = ctx.saved_tensors
- dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
- _flash_attn_backward(
- dout,
- q,
- k,
- v,
- out,
- softmax_lse,
- dq,
- dk,
- dv,
- ctx.softmax_scale,
- ctx.causal,
- ctx.window_size,
- ctx.deterministic,
- )
- dq = dq[..., : dout.shape[-1]] # We could have padded the head dimension
- dk = dk[..., : dout.shape[-1]]
- dv = dv[..., : dout.shape[-1]]
- return dq, dk, dv, None, None, None, None, None, None, None, None
- class FlashAttnVarlenFunc(torch.autograd.Function):
- @staticmethod
- def forward(
- ctx,
- q,
- k,
- v,
- cu_seqlens_q,
- cu_seqlens_k,
- max_seqlen_q,
- max_seqlen_k,
- softmax_scale,
- causal,
- window_size,
- deterministic=False,
- seqused_q=None,
- seqused_k=None,
- descale_q=None,
- descale_k=None,
- descale_v=None,
- ):
- if softmax_scale is None:
- softmax_scale = q.shape[-1] ** (-0.5)
- out, q, k, v, out_padded, softmax_lse = _flash_attn_varlen_forward(
- q,
- k,
- v,
- cu_seqlens_q,
- cu_seqlens_k,
- max_seqlen_q,
- max_seqlen_k,
- softmax_scale,
- causal=causal,
- window_size=window_size,
- seqused_q=seqused_q,
- seqused_k=seqused_k,
- descale_q=descale_q,
- descale_k=descale_k,
- descale_v=descale_v,
- )
- ctx.save_for_backward(
- q, k, v, out_padded, softmax_lse, cu_seqlens_q, cu_seqlens_k,
- seqused_q, seqused_k
- )
- ctx.max_seqlen_q = max_seqlen_q
- ctx.max_seqlen_k = max_seqlen_k
- ctx.softmax_scale = softmax_scale
- ctx.causal = causal
- ctx.window_size = window_size
- ctx.deterministic = deterministic
- return out, softmax_lse
- @staticmethod
- def backward(ctx, dout, *args):
- q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k = ctx.saved_tensors
- dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
- _flash_attn_varlen_backward(
- dout,
- q,
- k,
- v,
- out,
- softmax_lse,
- dq,
- dk,
- dv,
- cu_seqlens_q,
- cu_seqlens_k,
- ctx.max_seqlen_q,
- ctx.max_seqlen_k,
- ctx.softmax_scale,
- ctx.causal,
- ctx.window_size,
- ctx.deterministic,
- seqused_q,
- seqused_k,
- )
- dq = dq[..., : dout.shape[-1]] # We could have padded the head dimension
- dk = dk[..., : dout.shape[-1]]
- dv = dv[..., : dout.shape[-1]]
- return dq, dk, dv, None, None, None, None, None, None, None, None, None, None, None, None, None
- def flash_attn_func(
- q,
- k,
- v,
- softmax_scale=None,
- causal=False,
- window_size=(-1, -1),
- deterministic=False,
- descale_q=None,
- descale_k=None,
- descale_v=None,
- gqa_parallel=False,
- ):
- """dropout_p should be set to 0.0 during evaluation
- Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
- than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
- For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
- 0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
- If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
- For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
- 1 1 1 1 0
- 1 1 1 1 1
- If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
- 0 0
- 0 0
- 0 0
- 1 0
- 1 1
- If the row of the mask is all zero, the output will be zero.
- If window_size != (-1, -1), implements sliding window local attention. Query at position i
- will only attend to keys between
- [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
- Arguments:
- q: (batch_size, seqlen, nheads, headdim)
- k: (batch_size, seqlen, nheads_k, headdim)
- v: (batch_size, seqlen, nheads_k, headdim)
- dropout_p: float. Dropout probability.
- softmax_scale: float. The scaling of QK^T before applying softmax.
- Default to 1 / sqrt(headdim).
- causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
- window_size: (left, right). If not (-1, -1), implements sliding window local attention.
- alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
- (-alibi_slope * |i + seqlen_k - seqlen_q - j|)
- is added to the attention score of query i and key j.
- deterministic: bool. Whether to use the deterministic implementation of the backward pass,
- which is slightly slower and uses more memory. The forward pass is always deterministic.
- descale_q: (1,), fp32. A de-quantization scaling factor for q in fp8 execution.
- descale_k: (1,), fp32. A de-quantization scaling factor for k in fp8 execution.
- descale_v: (1,), fp32. A de-quantization scaling factor for v in fp8 execution.
- return_attn_probs: bool. Whether to return the attention probabilities. This option is for
- testing only. The returned probabilities are not guaranteed to be correct
- (they might not have the right scaling).
- Return:
- out: (batch_size, seqlen, nheads, headdim).
- softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
- logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
- normalization factor).
- S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
- The output of softmax (possibly with different scaling). It also encodes the dropout
- pattern (negative means that location was dropped, nonnegative means it was kept).
- """
- return FlashAttnFunc.apply(
- q,
- k,
- v,
- softmax_scale,
- causal,
- window_size,
- deterministic,
- descale_q,
- descale_k,
- descale_v,
- gqa_parallel
- )
- def flash_attn_varlen_func(
- q,
- k,
- v,
- cu_seqlens_q,
- cu_seqlens_k,
- max_seqlen_q,
- max_seqlen_k,
- softmax_scale=None,
- causal=False,
- window_size=(-1, -1),
- deterministic=False,
- seqused_q=None,
- seqused_k=None,
- descale_q=None,
- descale_k=None,
- descale_v=None,
- ):
- """
- Supports multi-query and grouped-query attention (MQA/GQA) by passing in K, V with fewer heads
- than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
- For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
- 0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
- If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
- For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
- 1 1 1 1 0
- 1 1 1 1 1
- If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
- 0 0
- 0 0
- 0 0
- 1 0
- 1 1
- If the row of the mask is all zero, the output will be zero.
- Arguments:
- q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch.
- k: (total_k, nheads_k, headdim), where total_k = total number of key tokens in the batch.
- v: (total_k, nheads_k, headdim), where total_k = total number of key tokens in the batch.
- cu_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
- of the sequences in the batch, used to index into q.
- cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
- of the sequences in the batch, used to index into kv.
- max_seqlen_q: int. Maximum query sequence length in the batch.
- max_seqlen_k: int. Maximum key sequence length in the batch.
- softmax_scale: float. The scaling of QK^T before applying softmax.
- Default to 1 / sqrt(headdim).
- causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
- window_size: (left, right). If not (-1, -1), implements sliding window local attention.
- seqused_q: (batch_size,), dtype torch.int32. If not None, it defines the actual number of
- query and output tokens in each sequence.
- seqused_k: (batch_size,), dtype torch.int32. If not None, it defines the actual number of
- key and value tokens in each sequence.
- Return:
- out: (total, nheads, headdim).
- softmax_lse [optional, if return_attn_probs=True]: (nheads, total_q_seqlen). The
- logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
- normalization factor).
- """
- return FlashAttnVarlenFunc.apply(
- q,
- k,
- v,
- cu_seqlens_q,
- cu_seqlens_k,
- max_seqlen_q,
- max_seqlen_k,
- softmax_scale,
- causal,
- window_size,
- deterministic,
- seqused_q,
- seqused_k,
- descale_q,
- descale_k,
- descale_v,
- )
- def flash_attn_with_kvcache(
- q,
- k_cache,
- v_cache,
- # k=None,
- # v=None,
- # rotary_cos=None,
- # rotary_sin=None,
- cache_seqlens: Optional[Union[(int, torch.Tensor)]] = None,
- cache_batch_idx: Optional[torch.Tensor] = None,
- # cache_leftpad: Optional[torch.Tensor] = None,
- # block_table: Optional[torch.Tensor] = None,
- softmax_scale=None,
- causal=False,
- window_size=(-1, -1), # -1 means infinite context window
- # softcap=0.0, # 0.0 means deactivated
- # rotary_interleaved=True,
- # alibi_slopes=None,
- num_splits=0,
- return_softmax_lse=False,
- gqa_parallel=None,
- max_seqlen_k_hint=None,
- descale_q=None,
- descale_k=None,
- descale_v=None,
- ):
- """
- NOTE: The KV cache API for FlashAttention-3 is a work in progress. We reproduce the description
- from the FlashAttention-2 method of the same name below.
- If k and v are not None, k_cache and v_cache will be updated *inplace* with the new values from
- k and v. This is useful for incremental decoding: you can pass in the cached keys/values from
- the previous step, and update them with the new keys/values from the current step, and do
- attention with the updated cache, all in 1 kernel.
- If you pass in k / v, you must make sure that the cache is large enough to hold the new values.
- For example, the KV cache could be pre-allocated with the max sequence length, and you can use
- cache_seqlens to keep track of the current sequence lengths of each sequence in the batch.
- Also apply rotary embedding if rotary_cos and rotary_sin are passed in. The key @k will be
- rotated by rotary_cos and rotary_sin at indices cache_seqlens, cache_seqlens + 1, etc.
- If causal or local (i.e., window_size != (-1, -1)), the query @q will be rotated by rotary_cos
- and rotary_sin at indices cache_seqlens, cache_seqlens + 1, etc.
- If not causal and not local, the query @q will be rotated by rotary_cos and rotary_sin at
- indices cache_seqlens only (i.e. we consider all tokens in @q to be at position cache_seqlens).
- See tests/test_flash_attn.py::test_flash_attn_kvcache for examples of how to use this function.
- Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
- than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
- For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
- 0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
- If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
- For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
- 1 1 1 1 0
- 1 1 1 1 1
- If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
- 0 0
- 0 0
- 0 0
- 1 0
- 1 1
- If the row of the mask is all zero, the output will be zero.
- If window_size != (-1, -1), implements sliding window local attention. Query at position i
- will only attend to keys between
- [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
- Note: Does not support backward pass.
- Arguments:
- q: (batch_size, seqlen, nheads, headdim)
- k_cache: (batch_size_cache, seqlen_cache, nheads_k, headdim) if there's no block_table,
- or (num_blocks, page_block_size, nheads_k, headdim) if there's a block_table (i.e. paged KV cache)
- page_block_size must be a multiple of 256.
- v_cache: (batch_size_cache, seqlen_cache, nheads_k, headdim) if there's no block_table,
- or (num_blocks, page_block_size, nheads_k, headdim) if there's a block_table (i.e. paged KV cache)
- k [optional]: (batch_size, seqlen_new, nheads_k, headdim). If not None, we concatenate
- k with k_cache, starting at the indices specified by cache_seqlens.
- v [optional]: (batch_size, seqlen_new, nheads_k, headdim). Similar to k.
- rotary_cos [optional]: (seqlen_ro, rotary_dim / 2). If not None, we apply rotary embedding
- to k and q. Only applicable if k and v are passed in. rotary_dim must be divisible by 16.
- rotary_sin [optional]: (seqlen_ro, rotary_dim / 2). Similar to rotary_cos.
- cache_seqlens: int, or (batch_size,), dtype torch.int32. The sequence lengths of the
- KV cache.
- cache_batch_idx: (batch_size,), dtype torch.int32. The indices used to index into the KV cache.
- If None, we assume that the batch indices are [0, 1, 2, ..., batch_size - 1].
- If the indices are not distinct, and k and v are provided, the values updated in the cache
- might come from any of the duplicate indices.
- cache_leftpad: (batch_size,), dtype torch.int32. The index that the KV cache starts. If None, assume 0.
- block_table [optional]: (batch_size, max_num_blocks_per_seq), dtype torch.int32.
- softmax_scale: float. The scaling of QK^T before applying softmax.
- Default to 1 / sqrt(headdim).
- causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
- window_size: (left, right). If not (-1, -1), implements sliding window local attention.
- softcap: float. Anything > 0 activates softcapping attention.
- rotary_interleaved: bool. Only applicable if rotary_cos and rotary_sin are passed in.
- If True, rotary embedding will combine dimensions 0 & 1, 2 & 3, etc. If False,
- rotary embedding will combine dimensions 0 & rotary_dim / 2, 1 & rotary_dim / 2 + 1
- (i.e. GPT-NeoX style).
- alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
- (-alibi_slope * |i + seqlen_k - seqlen_q - j|)
- is added to the attention score of query i and key j.
- num_splits: int. If > 1, split the key/value into this many chunks along the sequence.
- If num_splits == 1, we don't split the key/value. If num_splits == 0, we use a heuristic
- to automatically determine the number of splits.
- Don't change this unless you know what you are doing.
- return_softmax_lse: bool. Whether to return the logsumexp of the attention scores.
- Return:
- out: (batch_size, seqlen, nheads, headdim).
- softmax_lse [optional, if return_softmax_lse=True]: (batch_size, nheads, seqlen). The
- logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
- normalization factor).
- """
- # unimplemented kwargs
- k=None
- v=None
- rotary_cos=None
- rotary_sin=None
- cache_leftpad=None
- block_table=None
- softcap=0.0
- rotary_interleaved=True
- alibi_slopes=None
- assert k_cache.stride(-1) == 1, "k_cache must have contiguous last dimension"
- assert v_cache.stride(-1) == 1, "v_cache must have contiguous last dimension"
- q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
- if softmax_scale is None:
- softmax_scale = q.shape[-1] ** (-0.5)
- if cache_seqlens is not None and isinstance(cache_seqlens, int):
- cache_seqlens = torch.full(
- (k_cache.shape[0],), cache_seqlens, dtype=torch.int32, device=k_cache.device
- )
- cache_seqlens = maybe_contiguous(cache_seqlens)
- cache_batch_idx = maybe_contiguous(cache_batch_idx)
- # block_table = maybe_contiguous(block_table)
- if gqa_parallel is None:
- gqa_parallel = True if q.shape[1] <= 64 else False
- # not in gqa/mqa setup
- if q.shape[2] == k_cache.shape[2]:
- gqa_parallel = False
- if max_seqlen_k_hint is None:
- max_seqlen_k_hint = k_cache.shape[1]
- out, softmax_lse = flashattn_hopper_cuda.fwd_kvcache(
- q,
- k_cache,
- v_cache,
- k,
- v,
- cache_seqlens,
- rotary_cos,
- rotary_sin,
- cache_batch_idx,
- cache_leftpad,
- block_table,
- alibi_slopes,
- None,
- softmax_scale,
- descale_q,
- descale_k,
- descale_v,
- causal,
- window_size[0],
- window_size[1],
- softcap,
- rotary_interleaved,
- num_splits,
- max_seqlen_k_hint,
- gqa_parallel
- )
- return (out, softmax_lse) if return_softmax_lse else out
|