123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237 |
- # Run test with:
- # torchrun --no_python --nproc_per_node=8 pytest -q -s tests/ops/test_fused_dense_parallel.py
- import math
- import pytest
- import torch
- import torch.nn.functional as F
- from apex.transformer import parallel_state, tensor_parallel
- from flash_attn.ops.fused_dense import ColumnParallelLinear, FusedDense, FusedMLP, ParallelFusedMLP
- is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8
- @pytest.mark.parametrize("dtype", [torch.float16] + ([torch.bfloat16] if is_sm8x else []))
- # @pytest.mark.parametrize('dtype', [torch.bfloat16])
- @pytest.mark.parametrize("world_size", [1, 2, 4, 8])
- # @pytest.mark.parametrize('world_size', [2])
- @pytest.mark.parametrize("sequence_parallel", [True, False])
- # @pytest.mark.parametrize('sequence_parallel', [False])
- @pytest.mark.parametrize("has_bias", [True, False])
- # @pytest.mark.parametrize('has_bias', [False])
- @pytest.mark.parametrize("out_features", [1024])
- @pytest.mark.parametrize("in_features", [4096])
- def test_fused_linear_bias(
- in_features, out_features, has_bias, sequence_parallel, world_size, dtype
- ):
- assert out_features % world_size == 0
- rtol, atol = (3e-3, 3e-2) if dtype == torch.bfloat16 else (3e-3, 3e-3)
- if not torch.distributed.is_initialized():
- torch.distributed.init_process_group(backend="nccl", init_method="env://")
- device = f"cuda:{torch.distributed.get_rank()}"
- assert world_size <= torch.distributed.get_world_size()
- parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
- rank = parallel_state.get_tensor_model_parallel_rank()
- # set seed
- torch.random.manual_seed(0)
- batch_size = 2
- seqlen = 512
- assert batch_size * seqlen % world_size == 0
- x_pt = torch.randn(
- batch_size * seqlen, in_features, device=device, dtype=dtype, requires_grad=True
- )
- if sequence_parallel:
- x = (
- tensor_parallel.scatter_to_sequence_parallel_region(x_pt)
- .detach()
- .clone()
- .requires_grad_()
- )
- else:
- x = x_pt.detach().clone().requires_grad_()
- model_pt = torch.nn.Linear(in_features, out_features, bias=has_bias, device=device, dtype=dtype)
- partition_out_features = out_features // world_size
- model = ColumnParallelLinear(
- in_features,
- out_features,
- parallel_state.get_tensor_model_parallel_group(),
- bias=has_bias,
- sequence_parallel=sequence_parallel,
- device=device,
- dtype=dtype,
- )
- with torch.no_grad():
- model.weight.copy_(
- model_pt.weight[rank * partition_out_features : (rank + 1) * partition_out_features]
- )
- if has_bias:
- model.bias.copy_(
- model_pt.bias[rank * partition_out_features : (rank + 1) * partition_out_features]
- )
- out = model(x)
- out_pt = model_pt(x_pt)
- assert torch.allclose(
- out,
- out_pt[:, rank * partition_out_features : (rank + 1) * partition_out_features],
- rtol=rtol,
- atol=atol,
- )
- # If we don't divide by batch_size, the gradient gets a bit too large.
- g = torch.randn_like(out_pt) / 32
- out_pt.backward(g)
- out.backward(g[:, rank * partition_out_features : (rank + 1) * partition_out_features])
- parallel_state.destroy_model_parallel()
- partition_batch_dim = batch_size * seqlen // world_size
- assert torch.allclose(
- x.grad,
- x_pt.grad[rank * partition_batch_dim : (rank + 1) * partition_batch_dim]
- if sequence_parallel
- else x_pt.grad,
- rtol=rtol,
- atol=atol,
- )
- # The error for d_weight and d_bias is quite a bit higher
- assert torch.allclose(
- model.weight.grad,
- model_pt.weight.grad[rank * partition_out_features : (rank + 1) * partition_out_features],
- rtol=rtol,
- atol=atol * 10,
- )
- if has_bias:
- assert torch.allclose(
- model.bias.grad,
- model_pt.bias.grad[rank * partition_out_features : (rank + 1) * partition_out_features],
- rtol=rtol,
- atol=atol * 5,
- )
- @pytest.mark.parametrize("dtype", [torch.float16] + ([torch.bfloat16] if is_sm8x else []))
- # @pytest.mark.parametrize('dtype', [torch.bfloat16])
- @pytest.mark.parametrize("world_size", [1, 2, 4, 8])
- # @pytest.mark.parametrize('world_size', [2])
- @pytest.mark.parametrize("sequence_parallel", [True, False])
- # @pytest.mark.parametrize('sequence_parallel', [False])
- @pytest.mark.parametrize("has_bias2", [True, False])
- # @pytest.mark.parametrize('has_bias2', [True])
- @pytest.mark.parametrize("out_features", [4096])
- @pytest.mark.parametrize("in_features", [1024])
- def test_fused_mlp(in_features, out_features, has_bias2, sequence_parallel, world_size, dtype):
- assert out_features % world_size == 0
- rtol, atol = (3e-3, 3e-2) if dtype == torch.bfloat16 else (3e-3, 3e-3)
- if not torch.distributed.is_initialized():
- torch.distributed.init_process_group(backend="nccl", init_method="env://")
- device = f"cuda:{torch.distributed.get_rank()}"
- assert world_size <= torch.distributed.get_world_size()
- parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
- rank = parallel_state.get_tensor_model_parallel_rank()
- # set seed
- torch.random.manual_seed(0)
- batch_size = 2
- seqlen = 512
- assert batch_size * seqlen % world_size == 0
- x_pt = torch.randn(
- batch_size * seqlen, in_features, device=device, dtype=dtype, requires_grad=True
- )
- # We need to generate g here so that all processes get the same gradient,
- # as rank 0 will have an extra bias that changes the RNG.
- # If we don't divide by batch_size, the gradient gets a bit too large.
- g = torch.randn_like(x_pt) / 32
- if sequence_parallel:
- x = (
- tensor_parallel.scatter_to_sequence_parallel_region(x_pt)
- .detach()
- .clone()
- .requires_grad_()
- )
- else:
- x = x_pt.detach().clone().requires_grad_()
- model_pt_fc1 = torch.nn.Linear(in_features, out_features, device=device, dtype=dtype)
- model_pt_fc2 = torch.nn.Linear(
- out_features, in_features, bias=has_bias2, device=device, dtype=dtype
- )
- partition_out_features = out_features // world_size
- partition_in_features = in_features // world_size
- model = ParallelFusedMLP(
- in_features,
- out_features,
- in_features,
- process_group=parallel_state.get_tensor_model_parallel_group(),
- bias2=has_bias2 and rank == 0,
- sequence_parallel=sequence_parallel,
- device=device,
- dtype=dtype,
- )
- with torch.no_grad():
- model.fc1.weight.copy_(
- model_pt_fc1.weight[rank * partition_out_features : (rank + 1) * partition_out_features]
- )
- model.fc1.bias.copy_(
- model_pt_fc1.bias[rank * partition_out_features : (rank + 1) * partition_out_features]
- )
- model.fc2.weight.copy_(
- model_pt_fc2.weight[
- :, rank * partition_out_features : (rank + 1) * partition_out_features
- ]
- )
- if has_bias2 and rank == 0:
- model.fc2.bias.copy_(model_pt_fc2.bias)
- out = model(x)
- out_pt = model_pt_fc2(F.gelu(model_pt_fc1(x_pt), approximate="tanh"))
- partition_batch_dim = batch_size * seqlen // world_size
- assert torch.allclose(
- out,
- out_pt[rank * partition_batch_dim : (rank + 1) * partition_batch_dim]
- if sequence_parallel
- else out_pt,
- rtol=rtol,
- atol=atol,
- )
- out_pt.backward(g)
- out.backward(
- g[rank * partition_batch_dim : (rank + 1) * partition_batch_dim] if sequence_parallel else g
- )
- parallel_state.destroy_model_parallel()
- assert torch.allclose(
- x.grad,
- x_pt.grad[rank * partition_batch_dim : (rank + 1) * partition_batch_dim]
- if sequence_parallel
- else x_pt.grad,
- rtol=rtol,
- atol=atol,
- )
- # The error for d_weight and d_bias is quite a bit higher
- assert torch.allclose(
- model.fc1.weight.grad,
- model_pt_fc1.weight.grad[
- rank * partition_out_features : (rank + 1) * partition_out_features
- ],
- rtol=rtol,
- atol=atol * 10,
- )
- assert torch.allclose(
- model.fc1.bias.grad,
- model_pt_fc1.bias.grad[rank * partition_out_features : (rank + 1) * partition_out_features],
- rtol=rtol,
- atol=atol * 5,
- )
- assert torch.allclose(
- model.fc2.weight.grad,
- model_pt_fc2.weight.grad[
- :, rank * partition_out_features : (rank + 1) * partition_out_features
- ],
- rtol=rtol,
- atol=atol * 10,
- )
- if has_bias2 and rank == 0:
- assert torch.allclose(model.fc2.bias.grad, model_pt_fc2.bias.grad, rtol=rtol, atol=atol * 5)
|