123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216 |
- // Adapted from https://github.com/NVIDIA/apex/blob/master/csrc/fused_dense.cpp
- // We make it work for bfloat16
- #include <torch/extension.h>
- #include <torch/torch.h>
- #include <ATen/cuda/CUDAContext.h>
- #include <c10/cuda/CUDAGuard.h>
- #include <vector>
- #include <stdio.h>
- #define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
- // https://github.com/NVIDIA/apex/blob/master/csrc/type_shim.h
- // #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
- #define DISPATCH_HALF_AND_BF16(TYPE, NAME, ...) \
- switch (TYPE) { \
- case at::ScalarType::Half: { \
- using scalar_t = at::Half; \
- __VA_ARGS__(); \
- break; \
- } \
- case at::ScalarType::BFloat16: { \
- using scalar_t = at::BFloat16; \
- __VA_ARGS__(); \
- break; \
- } \
- default: \
- AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
- }
- template <typename T>
- int linear_bias_wgrad_cuda(const T *input, const T *d_output, int64_t in_features, int64_t batch_size, int64_t out_features, T *d_weight, T *d_bias, void *lt_workspace, size_t workspaceSize);
- template <typename T>
- int linear_act_forward_cuda(const T *input, const T *weight, const T *bias, int64_t in_features, int64_t batch_size, int64_t out_features, bool is_gelu, int heuristic, T *output, void *pre_act, void *lt_workspace, size_t workspaceSize);
- template <typename T>
- int bias_act_linear_dgrad_bgrad_cuda(const T *weight, const T *d_output, const void *pre_act, int64_t in_features, int64_t batch_size, int64_t out_features, bool is_gelu, int heuristic, T *d_input, T *d_bias, void *lt_workspace, size_t workspaceSize);
- std::vector<at::Tensor> linear_bias_wgrad(at::Tensor input, at::Tensor d_output, bool has_d_bias) {
- int64_t batch_size = input.size(0);
- int64_t in_features = input.size(1);
- int64_t out_features = d_output.size(1);
- TORCH_CHECK(input.dtype() == torch::kFloat16 || input.dtype() == torch::kBFloat16);
- TORCH_CHECK(input.dtype() == d_output.dtype());
- TORCH_CHECK(input.is_cuda());
- TORCH_CHECK(d_output.is_cuda());
- TORCH_CHECK(input.is_contiguous());
- TORCH_CHECK(d_output.is_contiguous());
- CHECK_SHAPE(input, batch_size, in_features);
- CHECK_SHAPE(d_output, batch_size, out_features);
- // Otherwise the kernel will be launched from cuda:0 device
- // Cast to char to avoid compiler warning about narrowing
- at::cuda::CUDAGuard device_guard{(char)input.get_device()};
- // create output/workspace tensor
- auto opts = input.options();
- auto d_weight = at::empty({out_features, in_features}, opts);
- at::Tensor d_bias;
- if (has_d_bias) {
- #if defined(CUBLAS_VERSION) && CUBLAS_VERSION < 11600
- d_bias = d_output.view({-1, out_features}).sum(0, false);
- #else
- d_bias = at::empty({out_features}, opts);
- #endif
- }
- // See https://github.com/pytorch/pytorch/issues/73328 for reasoning behind setting this to 1M.
- // However, Apex sets it to 4M and TransformerEngine sets to 32M for Hopper and 4M for other GPUs
- // https://github.com/NVIDIA/TransformerEngine/blob/a0f0065498bbcfc1da78cf9e8b166f5381613fbc/transformer_engine/pytorch/module.py#L91
- size_t workspaceSize = 1024 * 1024 * (at::cuda::getCurrentDeviceProperties()->major >= 9 ? 32 : 4);
- auto lt_workspace = at::empty({static_cast<int64_t>(workspaceSize)}, opts.dtype(torch::kUInt8));
- DISPATCH_HALF_AND_BF16(input.scalar_type(), "linear_bias_wgrad", [&] {
- auto result = linear_bias_wgrad_cuda<scalar_t>(
- input.data_ptr<scalar_t>(),
- d_output.data_ptr<scalar_t>(),
- in_features,
- batch_size,
- out_features,
- d_weight.data_ptr<scalar_t>(),
- has_d_bias ? d_bias.data_ptr<scalar_t>() : nullptr,
- (void*) (lt_workspace.data_ptr()),
- workspaceSize);
- TORCH_CHECK(result == 0, "linear_bias_wgrad failed.");
- });
- return {d_weight, d_bias};
- }
- std::vector<at::Tensor> linear_act_forward(at::Tensor input, at::Tensor weight,
- c10::optional<at::Tensor> bias_,
- bool is_gelu, bool save_pre_act, int heuristic) {
- int64_t batch_size = input.size(0);
- int64_t in_features = input.size(1);
- int64_t out_features = weight.size(0);
- TORCH_CHECK(input.dtype() == torch::kFloat16 || input.dtype() == torch::kBFloat16);
- TORCH_CHECK(input.dtype() == weight.dtype());
- TORCH_CHECK(input.is_cuda());
- TORCH_CHECK(weight.is_cuda());
- TORCH_CHECK(input.is_contiguous());
- TORCH_CHECK(weight.is_contiguous());
- CHECK_SHAPE(input, batch_size, in_features);
- CHECK_SHAPE(weight, out_features, in_features);
- if (bias_.has_value()) {
- auto bias = bias_.value();
- TORCH_CHECK(bias.dtype() == input.dtype());
- TORCH_CHECK(bias.is_cuda());
- TORCH_CHECK(bias.is_contiguous());
- CHECK_SHAPE(bias, out_features);
- }
- // Otherwise the kernel will be launched from cuda:0 device
- // Cast to char to avoid compiler warning about narrowing
- at::cuda::CUDAGuard device_guard{(char)input.get_device()};
- // create output/workspace tensor
- auto opts = input.options();
- auto output = at::empty({batch_size, out_features}, opts);
- at::Tensor pre_act;
- // If ReLU, cuBlasLT stores a bit-mask (1 bit per element)
- if (save_pre_act) { pre_act = at::empty({batch_size, is_gelu ? out_features : out_features / 8},
- is_gelu ? opts : opts.dtype(torch::kUInt8)); }
- // See https://github.com/pytorch/pytorch/issues/73328 for reasoning behind setting this to 1M.
- // However, Apex sets it to 4M and TransformerEngine sets to 32M for Hopper and 4M for other GPUs
- // https://github.com/NVIDIA/TransformerEngine/blob/a0f0065498bbcfc1da78cf9e8b166f5381613fbc/transformer_engine/pytorch/module.py#L91
- size_t workspaceSize = 1024 * 1024 * (at::cuda::getCurrentDeviceProperties()->major >= 9 ? 32 : 4);
- auto lt_workspace = at::empty({static_cast<int64_t>(workspaceSize)}, opts.dtype(torch::kUInt8));
- DISPATCH_HALF_AND_BF16(input.scalar_type(), "linear_act_forward", [&] {
- auto result = linear_act_forward_cuda<scalar_t>(
- input.data_ptr<scalar_t>(),
- weight.data_ptr<scalar_t>(),
- bias_.has_value()? bias_.value().data_ptr<scalar_t>() : nullptr,
- in_features,
- batch_size,
- out_features,
- is_gelu,
- heuristic,
- output.data_ptr<scalar_t>(),
- save_pre_act ? pre_act.data_ptr() : nullptr,
- (void*) (lt_workspace.data_ptr()),
- workspaceSize);
- TORCH_CHECK(result == 0, "linear_act_forward failed.");
- });
- std::vector<at::Tensor> result = {output};
- if (save_pre_act) { result.push_back(pre_act); };
- return result;
- }
- std::vector<at::Tensor> bias_act_linear_dgrad_bgrad(
- at::Tensor weight, at::Tensor d_output, at::Tensor pre_act, bool is_gelu, int heuristic
- ) {
- int64_t batch_size = d_output.size(0);
- int64_t out_features = d_output.size(1);
- int64_t in_features = weight.size(1);
- TORCH_CHECK(weight.dtype() == torch::kFloat16 || weight.dtype() == torch::kBFloat16);
- TORCH_CHECK(weight.dtype() == d_output.dtype());
- TORCH_CHECK(is_gelu ? (pre_act.dtype() == weight.dtype()) : (pre_act.dtype() == torch::kUInt8));
- TORCH_CHECK(weight.is_cuda());
- TORCH_CHECK(d_output.is_cuda());
- TORCH_CHECK(pre_act.is_cuda());
- TORCH_CHECK(weight.is_contiguous());
- TORCH_CHECK(d_output.is_contiguous());
- TORCH_CHECK(pre_act.is_contiguous());
- CHECK_SHAPE(weight, out_features, in_features);
- CHECK_SHAPE(d_output, batch_size, out_features);
- // If ReLU, cuBlasLT stores a bit-mask (1 bit per element)
- CHECK_SHAPE(pre_act, batch_size, is_gelu ? in_features : in_features / 8);
- // Otherwise the kernel will be launched from cuda:0 device
- // Cast to char to avoid compiler warning about narrowing
- at::cuda::CUDAGuard device_guard{(char)weight.get_device()};
- // create output/workspace tensor
- auto opts = weight.options();
- auto d_bias = at::empty({in_features}, opts);
- auto d_input = at::empty({batch_size, in_features}, opts);
- // See https://github.com/pytorch/pytorch/issues/73328 for reasoning behind setting this to 1M.
- // However, Apex sets it to 4M and TransformerEngine sets to 32M for Hopper and 4M for other GPUs
- // https://github.com/NVIDIA/TransformerEngine/blob/a0f0065498bbcfc1da78cf9e8b166f5381613fbc/transformer_engine/pytorch/module.py#L91
- size_t workspaceSize = 1024 * 1024 * (at::cuda::getCurrentDeviceProperties()->major >= 9 ? 32 : 4);
- auto lt_workspace = at::empty({static_cast<int64_t>(workspaceSize)}, opts.dtype(torch::kUInt8));
- DISPATCH_HALF_AND_BF16(weight.scalar_type(), "bias_act_linear_dgrad_bgrad", [&] {
- auto result = bias_act_linear_dgrad_bgrad_cuda<scalar_t>(
- weight.data_ptr<scalar_t>(),
- d_output.data_ptr<scalar_t>(),
- pre_act.data_ptr(),
- in_features,
- batch_size,
- out_features,
- is_gelu,
- heuristic,
- d_input.data_ptr<scalar_t>(),
- d_bias.data_ptr<scalar_t>(),
- (void*) (lt_workspace.data_ptr()),
- workspaceSize);
- TORCH_CHECK(result == 0, "bias_act_linear_dgrad_bgrad failed.");
- });
- return {d_input, d_bias};
- }
- PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
- m.def("linear_bias_wgrad", &linear_bias_wgrad, "linear bias wgrad");
- m.def("linear_act_forward", &linear_act_forward, "linear gelu/relu forward");
- m.def("bias_act_linear_dgrad_bgrad", &bias_act_linear_dgrad_bgrad, "bias gelu/relu linear dgrad bgrad");
- }
|