123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272 |
- import math
- import torch
- import torch.nn.functional as F
- import pytest
- from einops import rearrange
- from flash_attn.ops.layer_norm import DropoutAddLayerNorm, dropout_add_layer_norm
- is_sm8x = torch.cuda.get_device_capability('cuda')[0] >= 8
- @pytest.mark.parametrize('has_rowscale', [True, False])
- # @pytest.mark.parametrize('has_rowscale', [True])
- @pytest.mark.parametrize('has_residual', [True, False])
- # @pytest.mark.parametrize('has_residual', [False])
- @pytest.mark.parametrize('dropout_p', [0.37, 0.0])
- # @pytest.mark.parametrize('dropout_p', [0.0])
- @pytest.mark.parametrize('weight_dtype', [torch.float32, torch.float16])
- # @pytest.mark.parametrize('weight_dtype', [torch.float32])
- @pytest.mark.parametrize('input_dtype,residual_dtype',
- [(torch.float16, torch.float16), (torch.float16, torch.float32),
- (torch.float32, torch.float32)]
- + ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []))
- # @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float16, torch.float32)])
- @pytest.mark.parametrize('hidden_size', [192, 256, 384, 768, 1024, 1280, 1536, 1600, 2048, 2560, 3000, 3072, 4096, 5120, 6144])
- def test_dropout_layer_norm_training(hidden_size, input_dtype, residual_dtype, weight_dtype,
- dropout_p, has_residual, has_rowscale):
- if weight_dtype == torch.float16 and input_dtype == torch.bfloat16:
- pytest.skip() # Not supported
- # Backward numerical error is high, and this case isn't used
- if has_rowscale and not has_residual:
- pytest.skip()
- device = 'cuda'
- # rtol, atol = (1e-5, 1e-6) if input_dtype == torch.float32 else (1e-3, 1e-4)
- rtol, atol = (1e-3, 1e-4)
- # set seed
- torch.random.manual_seed(0)
- batch_size = 8
- seqlen = 512
- x0_pt = torch.randn(batch_size, seqlen, hidden_size, device=device, dtype=input_dtype,
- requires_grad=True)
- x0 = x0_pt.detach().clone().requires_grad_()
- x0_ref = x0_pt.detach().clone().float().requires_grad_()
- if has_residual:
- x1_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
- x1 = x1_pt.detach().clone().requires_grad_()
- x1_ref = x1_pt.detach().clone().float().requires_grad_()
- else:
- x1 = None
- if has_rowscale:
- rowscale = torch.empty(batch_size, seqlen, device=device, dtype=input_dtype)
- survival_rate = 0.87
- rowscale = rowscale.bernoulli_(survival_rate) / survival_rate
- x0_scaled_pt = x0_pt * rearrange(rowscale, '... -> ... 1')
- x0_scaled_ref = x0_ref * rearrange(rowscale, '... -> ... 1')
- else:
- rowscale = None
- x0_scaled_pt = x0_pt
- x0_scaled_ref = x0_ref
- model_pt = torch.nn.LayerNorm(hidden_size, device=device, dtype=weight_dtype)
- torch.nn.init.normal_(model_pt.weight)
- torch.nn.init.normal_(model_pt.bias)
- model_ref = torch.nn.LayerNorm(hidden_size, device=device, dtype=torch.float32)
- model = DropoutAddLayerNorm(hidden_size, p=dropout_p, device=device, dtype=weight_dtype)
- with torch.no_grad():
- model.weight.copy_(model_pt.weight)
- model.bias.copy_(model_pt.bias)
- model_ref.weight.copy_(model_pt.weight)
- model_ref.bias.copy_(model_pt.bias)
- residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32
- out, dmask = dropout_add_layer_norm(x0, x1, model.weight, model.bias, model.p,
- model.epsilon, rowscale=rowscale,
- residual_in_fp32=residual_in_fp32, return_dropout_mask=True)
- assert out.dtype == input_dtype
- print(f'Actual dropout fraction: {1 - dmask.float().mean().item()}')
- if has_residual:
- residual_pt = ((x0_scaled_pt.float() * dmask.float()) / (1 - dropout_p) + x1_pt.float()).to(dtype=residual_dtype)
- residual_ref = (x0_scaled_ref * dmask.float()) / (1 - dropout_p) + x1_ref
- else:
- residual_pt = ((x0_scaled_pt.float() * dmask.float()) / (1 - dropout_p)).to(dtype=residual_dtype)
- residual_ref = (x0_scaled_ref * dmask.float()) / (1 - dropout_p)
- out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(dtype=input_dtype)
- out_ref = model_ref(residual_ref)
- assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4
- g = torch.randn_like(out) / batch_size
- out_pt.backward(g)
- out.backward(g)
- out_ref.backward(g)
- assert (x0.grad - x0_ref.grad).abs().max() <= 4 * (x0_pt.grad - x0_ref.grad).abs().max() + 1e-4
- if has_residual:
- assert (x1.grad - x1_ref.grad).abs().max() <= 4 * (x1_pt.grad - x1_ref.grad).abs().max() + 1e-4
- assert (model.weight.grad - model_ref.weight.grad).abs().max() <= 2 * (model_pt.weight.grad - model_ref.weight.grad).abs().max() + 3e-5
- assert (model.bias.grad - model_ref.bias.grad).abs().max() <= 2 * (model_pt.bias.grad - model_ref.bias.grad).abs().max() + 3e-5
- @pytest.mark.parametrize('weight_dtype', [torch.float32, torch.float16])
- @pytest.mark.parametrize('input_dtype,residual_dtype',
- [(torch.float16, torch.float16), (torch.float16, torch.float32),
- (torch.float32, torch.float32)]
- + ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []))
- @pytest.mark.parametrize('hidden_size', [768, 1024, 1280, 1536, 1600, 2048, 2560, 3072, 4096, 5120])
- def test_dropout_layer_norm_eval(hidden_size, input_dtype, residual_dtype, weight_dtype):
- if weight_dtype == torch.float16 and input_dtype == torch.bfloat16:
- pytest.skip() # Not supported
- device = 'cuda'
- # rtol, atol = (1e-5, 1e-6) if dtype == torch.float32 else (1e-3, 1e-4)
- rtol, atol = (1e-3, 1e-4)
- dropout_p = 0.37
- # set seed
- torch.random.manual_seed(0)
- batch_size = 32
- seqlen = 512
- x0_pt = torch.randn(batch_size, seqlen, hidden_size, device=device, dtype=input_dtype,
- requires_grad=True)
- x0 = x0_pt.detach().clone().requires_grad_()
- x0_ref = x0_pt.detach().clone().float().requires_grad_()
- x1_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
- x1 = x1_pt.detach().clone().requires_grad_()
- x1_ref = x1_pt.detach().clone().float().requires_grad_()
- model_pt = torch.nn.LayerNorm(hidden_size, device=device, dtype=weight_dtype)
- model = DropoutAddLayerNorm(hidden_size, p=dropout_p, device=device, dtype=weight_dtype)
- model_ref = torch.nn.LayerNorm(hidden_size, device=device, dtype=torch.float32)
- with torch.no_grad():
- model.weight.copy_(model_pt.weight)
- model.bias.copy_(model_pt.bias)
- model_ref.weight.copy_(model_pt.weight)
- model_ref.bias.copy_(model_pt.bias)
- model_pt.eval()
- model.eval()
- model_ref.eval()
- out = model(x0, x1)
- residual_pt = (x0_pt.float() + x1_pt.float()).to(dtype=residual_dtype)
- residual_ref = x0_ref + x1_ref
- out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(input_dtype)
- out_ref = model_ref(residual_ref)
- assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4
- @pytest.mark.parametrize('has_rowscale', [True, False])
- @pytest.mark.parametrize('has_residual', [True, False])
- @pytest.mark.parametrize('dropout_p', [0.37, 0.0])
- @pytest.mark.parametrize('weight_dtype', [torch.float32, torch.float16])
- @pytest.mark.parametrize('input_dtype,residual_dtype',
- [(torch.float16, torch.float16), (torch.float16, torch.float32),
- (torch.float32, torch.float32)]
- + ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []))
- # @pytest.mark.parametrize('has_rowscale', [False])
- # @pytest.mark.parametrize('has_residual', [True])
- # @pytest.mark.parametrize('dropout_p', [0.0])
- # @pytest.mark.parametrize('weight_dtype', [torch.float32])
- # @pytest.mark.parametrize('input_dtype,residual_dtype', [(torch.float32, torch.float32)])
- # @pytest.mark.parametrize('hidden_size', [768, 1024, 1280, 1536, 1600, 2048, 2560, 3072, 4096, 5120])
- @pytest.mark.parametrize('hidden_size', [192, 256, 384, 768, 1024, 1280, 1536, 1600, 2048, 2560, 3000, 3072, 4096, 5120, 6144])
- def test_dropout_layer_norm_prenorm_training(hidden_size, input_dtype, residual_dtype, weight_dtype,
- dropout_p, has_residual, has_rowscale):
- if weight_dtype == torch.float16 and input_dtype == torch.bfloat16:
- pytest.skip() # Not supported
- # Backward numerical error is high, and this case isn't used
- if has_rowscale and not has_residual:
- pytest.skip()
- device = 'cuda'
- # rtol, atol = (1e-5, 1e-6) if input_dtype == torch.float32 else (1e-3, 1e-4)
- rtol, atol = (1e-3, 2e-4)
- # set seed
- torch.random.manual_seed(0)
- batch_size = 8
- seqlen = 512
- x0_pt = torch.randn(batch_size, seqlen, hidden_size, device=device, dtype=input_dtype,
- requires_grad=True)
- x0 = x0_pt.detach().clone().requires_grad_()
- x0_ref = x0_pt.detach().clone().float().requires_grad_()
- if has_residual:
- x1_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
- x1 = x1_pt.detach().clone().requires_grad_()
- x1_ref = x1_pt.detach().clone().float().requires_grad_()
- else:
- x1 = None
- if has_rowscale:
- rowscale = torch.empty(batch_size, seqlen, device=device, dtype=input_dtype)
- survival_rate = 0.87
- rowscale = rowscale.bernoulli_(survival_rate) / survival_rate
- x0_scaled_pt = x0_pt * rearrange(rowscale, '... -> ... 1')
- x0_scaled_ref = x0_ref * rearrange(rowscale, '... -> ... 1')
- else:
- rowscale = None
- x0_scaled_pt = x0_pt
- x0_scaled_ref = x0_ref
- model_pt = torch.nn.LayerNorm(hidden_size, device=device, dtype=weight_dtype)
- model_ref = torch.nn.LayerNorm(hidden_size, device=device, dtype=torch.float32)
- model = DropoutAddLayerNorm(hidden_size, prenorm=True, p=dropout_p, device=device,
- dtype=weight_dtype)
- with torch.no_grad():
- model.weight.copy_(model_pt.weight)
- model.bias.copy_(model_pt.bias)
- model_ref.weight.copy_(model_pt.weight)
- model_ref.bias.copy_(model_pt.bias)
- residual_in_fp32 = (not has_residual) and residual_dtype == torch.float32
- out, residual, dmask = dropout_add_layer_norm(x0, x1, model.weight, model.bias, model.p,
- model.epsilon, rowscale=rowscale, prenorm=True,
- residual_in_fp32=residual_in_fp32,
- return_dropout_mask=True)
- print(f'Actual dropout fraction: {1 - dmask.float().mean().item()}')
- if has_residual:
- residual_pt = ((x0_scaled_pt.float() * dmask.float()) / (1 - dropout_p) + x1_pt.float()).to(dtype=residual_dtype)
- residual_ref = (x0_scaled_ref * dmask.float()) / (1 - dropout_p) + x1_ref
- else:
- residual_pt = ((x0_scaled_pt.float() * dmask.float()) / (1 - dropout_p)).to(dtype=residual_dtype)
- residual_ref = (x0_scaled_ref * dmask.float()) / (1 - dropout_p)
- out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(dtype=input_dtype)
- out_ref = model_ref(residual_ref)
- assert out.dtype == input_dtype
- assert residual.dtype == residual_dtype
- assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4
- assert (residual - residual_ref).abs().max() <= 4 * (residual_pt - residual_ref).abs().max() + 1e-4
- g = torch.randn_like(out) / batch_size
- (out_pt * F.sigmoid(residual_pt)).backward(g)
- (out * F.sigmoid(residual)).backward(g)
- (out_ref * F.sigmoid(residual_ref.to(dtype=residual_dtype))).backward(g)
- assert (x0.grad - x0_ref.grad).abs().max() <= 4 * (x0_pt.grad - x0_ref.grad).abs().max() + 1e-4
- if has_residual:
- assert (x1.grad - x1_ref.grad).abs().max() <= 4 * (x1_pt.grad - x1_ref.grad).abs().max() + 1e-4
- assert (model.weight.grad - model_ref.weight.grad).abs().max() <= 2 * (model_pt.weight.grad - model_ref.weight.grad).abs().max() + 2e-4
- assert (model.bias.grad - model_ref.bias.grad).abs().max() <= 2 * (model_pt.bias.grad - model_ref.bias.grad).abs().max() + 2e-4
- @pytest.mark.parametrize('weight_dtype', [torch.float32, torch.float16])
- @pytest.mark.parametrize('input_dtype,residual_dtype',
- [(torch.float16, torch.float16), (torch.float16, torch.float32),
- (torch.float32, torch.float32)]
- + ([(torch.bfloat16, torch.bfloat16), (torch.bfloat16, torch.float32)] if is_sm8x else []))
- @pytest.mark.parametrize('hidden_size', [768, 1024, 1280, 1536, 1600, 2048, 2560, 3072, 4096, 5120])
- def test_dropout_layer_norm_prenorm_eval(hidden_size, input_dtype, residual_dtype, weight_dtype):
- if weight_dtype == torch.float16 and input_dtype == torch.bfloat16:
- pytest.skip() # Not supported
- device = 'cuda'
- # rtol, atol = (1e-5, 1e-6) if dtype == torch.float32 else (1e-3, 1e-4)
- rtol, atol = (1e-3, 1e-4)
- dropout_p = 0.37
- # set seed
- torch.random.manual_seed(0)
- batch_size = 32
- seqlen = 512
- x0_pt = torch.randn(batch_size, seqlen, hidden_size, device=device, dtype=input_dtype,
- requires_grad=True)
- x0 = x0_pt.detach().clone().requires_grad_()
- x0_ref = x0_pt.detach().clone().float().requires_grad_()
- x1_pt = torch.randn_like(x0, dtype=residual_dtype, requires_grad=True)
- x1 = x1_pt.detach().clone().requires_grad_()
- x1_ref = x1_pt.detach().clone().float().requires_grad_()
- model_pt = torch.nn.LayerNorm(hidden_size, device=device, dtype=weight_dtype)
- model = DropoutAddLayerNorm(hidden_size, prenorm=True, p=dropout_p, device=device,
- dtype=weight_dtype)
- model_ref = torch.nn.LayerNorm(hidden_size, device=device, dtype=torch.float32)
- with torch.no_grad():
- model.weight.copy_(model_pt.weight)
- model.bias.copy_(model_pt.bias)
- model_ref.weight.copy_(model_pt.weight)
- model_ref.bias.copy_(model_pt.bias)
- model_pt.eval()
- model.eval()
- model_ref.eval()
- out, residual = model(x0, x1)
- residual_pt = (x0_pt.float() + x1_pt.float()).to(dtype=residual_dtype)
- residual_ref = x0_ref + x1_ref
- out_pt = model_pt(residual_pt.to(dtype=weight_dtype)).to(input_dtype)
- out_ref = model_ref(residual_ref)
- assert (out - out_ref).abs().max() <= 4 * (out_pt - out_ref).abs().max() + 1e-4
- assert (residual - residual_ref).abs().max() <= 4 * (residual_pt - residual_ref).abs().max() + 1e-4
|