1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204 |
- import os
- import math
- import itertools
- import pytest
- import torch
- import torch.nn.functional as F
- from einops import rearrange, repeat
- from flash_attn.bert_padding import pad_input, unpad_input
- from flash_attn.layers.rotary import apply_rotary_emb
- from flash_attn_interface import flash_attn_func, flash_attn_varlen_func, flash_attn_combine, flash_attn_with_kvcache
- ABS_TOL = 5e-3
- REL_TOL = 1e-1
- DISABLE_BACKWARD = os.getenv("FLASH_ATTENTION_DISABLE_BACKWARD", "FALSE") == "TRUE"
- DISABLE_SPLIT = os.getenv("FLASH_ATTENTION_DISABLE_SPLIT", "FALSE") == "TRUE"
- DISABLE_PAGEDKV = os.getenv("FLASH_ATTENTION_DISABLE_PAGEDKV", "FALSE") == "TRUE"
- DISABLE_APPENDKV = os.getenv("FLASH_ATTENTION_DISABLE_APPENDKV", "FALSE") == "TRUE"
- DISABLE_LOCAL = os.getenv("FLASH_ATTENTION_DISABLE_LOCAL", "FALSE") == "TRUE"
- DISABLE_SOFTCAP = os.getenv("FLASH_ATTENTION_DISABLE_SOFTCAP", "FALSE") == "TRUE"
- DISABLE_PACKGQA = os.getenv("FLASH_ATTENTION_DISABLE_PACKGQA", "FALSE") == "TRUE"
- DISABLE_FP16 = os.getenv("FLASH_ATTENTION_DISABLE_FP16", "FALSE") == "TRUE"
- DISABLE_FP8 = os.getenv("FLASH_ATTENTION_DISABLE_FP8", "FALSE") == "TRUE"
- def generate_random_padding_mask(max_seqlen, batch_size, device, mode="random"):
- assert mode in ["full", "random", "third"]
- if mode == "full":
- lengths = torch.full((batch_size, 1), max_seqlen, device=device, dtype=torch.int32)
- elif mode == "random":
- lengths = torch.randint(
- max(1, max_seqlen - 20), max_seqlen + 1, (batch_size, 1), device=device
- )
- elif mode == "third":
- lengths = torch.randint(max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device)
- padding_mask = (
- repeat(torch.arange(max_seqlen, device=device), "s -> b s", b=batch_size) < lengths
- )
- return padding_mask
- def generate_qkv(
- q, k, v, query_padding_mask=None, key_padding_mask=None, kvpacked=False, qkvpacked=False
- ):
- """
- Arguments:
- q: (batch_size, seqlen_q, nheads, d)
- k: (batch_size, seqlen_k, nheads_k, d)
- v: (batch_size, seqlen_k, nheads_k, d)
- query_padding_mask: (batch_size, seqlen), bool
- key_padding_mask: (batch_size, seqlen), bool
- """
- assert not (kvpacked and qkvpacked)
- batch_size, seqlen_q, nheads, d = q.shape
- _, seqlen_k, nheads_k, _ = k.shape
- assert k.shape == (batch_size, seqlen_k, nheads_k, d)
- assert v.shape == (batch_size, seqlen_k, nheads_k, d)
- if query_padding_mask is not None:
- q_unpad, indices_q, cu_seqlens_q, max_seqlen_q, *rest = unpad_input(q, query_padding_mask)
- output_pad_fn = lambda output_unpad: pad_input(
- output_unpad, indices_q, batch_size, seqlen_q
- )
- else:
- q_unpad = rearrange(q, "b s h d -> (b s) h d")
- cu_seqlens_q = torch.arange(
- 0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q_unpad.device
- )
- max_seqlen_q = seqlen_q
- output_pad_fn = lambda output_unpad: rearrange(
- output_unpad, "(b s) h d -> b s h d", b=batch_size
- )
- if key_padding_mask is not None:
- k_unpad, indices_k, cu_seqlens_k, max_seqlen_k, *rest = unpad_input(k, key_padding_mask)
- v_unpad, _, _, _, *rest = unpad_input(v, key_padding_mask)
- else:
- k_unpad = rearrange(k, "b s h d -> (b s) h d")
- v_unpad = rearrange(v, "b s h d -> (b s) h d")
- cu_seqlens_k = torch.arange(
- 0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=k_unpad.device
- )
- max_seqlen_k = seqlen_k
- if qkvpacked:
- assert (query_padding_mask == key_padding_mask).all()
- assert nheads == nheads_k
- qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1)
- qkv = torch.stack([q, k, v], dim=2)
- if query_padding_mask is not None:
- dqkv_pad_fn = lambda dqkv_unpad: pad_input(dqkv_unpad, indices_q, batch_size, seqlen_q)
- else:
- dqkv_pad_fn = lambda dqkv_unpad: rearrange(
- dqkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
- )
- return (
- qkv_unpad.detach().requires_grad_(),
- cu_seqlens_q,
- max_seqlen_q,
- qkv.detach().requires_grad_(),
- output_pad_fn,
- dqkv_pad_fn,
- )
- elif kvpacked:
- kv_unpad = torch.stack([k_unpad, v_unpad], dim=1)
- kv = torch.stack([k, v], dim=2)
- dq_pad_fn = output_pad_fn
- if key_padding_mask is not None:
- dkv_pad_fn = lambda dkv_unpad: pad_input(dkv_unpad, indices_k, batch_size, seqlen_k)
- else:
- dkv_pad_fn = lambda dkv_unpad: rearrange(
- dkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
- )
- return (
- q_unpad.detach().requires_grad_(),
- kv_unpad.detach().requires_grad_(),
- cu_seqlens_q,
- cu_seqlens_k,
- max_seqlen_q,
- max_seqlen_k,
- q.detach().requires_grad_(),
- kv.detach().requires_grad_(),
- output_pad_fn,
- dq_pad_fn,
- dkv_pad_fn,
- )
- else:
- dq_pad_fn = output_pad_fn
- if key_padding_mask is not None:
- dk_pad_fn = lambda dk_unpad: pad_input(dk_unpad, indices_k, batch_size, seqlen_k)
- else:
- dk_pad_fn = lambda dk_unpad: rearrange(dk_unpad, "(b s) h d -> b s h d", b=batch_size)
- return (
- q_unpad.detach().requires_grad_(),
- k_unpad.detach().requires_grad_(),
- v_unpad.detach().requires_grad_(),
- cu_seqlens_q,
- cu_seqlens_k,
- max_seqlen_q,
- max_seqlen_k,
- q.detach().requires_grad_(),
- k.detach().requires_grad_(),
- v.detach().requires_grad_(),
- output_pad_fn,
- dq_pad_fn,
- dk_pad_fn,
- )
- def construct_local_mask(
- seqlen_q,
- seqlen_k,
- window_size=(-1, -1), # -1 means infinite window size
- sink_token_length=0,
- query_padding_mask=None,
- key_padding_mask=None,
- key_leftpad=None,
- device=None,
- ):
- row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1")
- col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
- if key_leftpad is not None:
- key_leftpad = rearrange(key_leftpad, "b -> b 1 1 1")
- col_idx = repeat(col_idx, "s -> b 1 1 s", b=key_leftpad.shape[0])
- col_idx = torch.where(col_idx >= key_leftpad, col_idx - key_leftpad, 2**32)
- sk = (
- seqlen_k
- if key_padding_mask is None
- else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
- )
- sq = (
- seqlen_q
- if query_padding_mask is None
- else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
- )
- if window_size[0] < 0:
- return col_idx > row_idx + sk - sq + window_size[1]
- else:
- sk = torch.full_like(col_idx, seqlen_k) if key_padding_mask is None else sk
- return torch.logical_or(
- col_idx > torch.minimum(row_idx + sk - sq + window_size[1], sk),
- torch.logical_and(col_idx < row_idx + sk - sq - window_size[0], col_idx >= sink_token_length),
- )
- def print_diffs(out, out_ref):
- out_1d = out.flatten()
- out_ref_1d = out_ref.flatten()
- for idx, (e_o, e_o_ref) in enumerate(zip(out_1d, out_ref_1d)):
- diff = e_o - e_o_ref
- abs_diff = abs(diff)
- abs_ref = abs(e_o_ref + 1e-5)
- relative_diff = abs_diff / abs_ref
- if abs_diff > ABS_TOL or relative_diff > REL_TOL:
- print(f"==== diff ==== {idx}, test: {e_o}, ref: {e_o_ref}")
- def attention_ref(
- q,
- k,
- v,
- query_padding_mask=None,
- key_padding_mask=None,
- key_leftpad=None,
- attn_bias=None,
- dropout_p=0.0,
- dropout_mask=None,
- causal=False,
- q_descale=None, k_descale=None, v_descale=None,
- window_size=(-1, -1), # -1 means infinite window size
- sink_token_length=0,
- softcap=0.0,
- upcast=True,
- reorder_ops=False,
- intermediate_dtype=None,
- ):
- """
- Arguments:
- q: (batch_size, seqlen_q, nheads, head_dim)
- k: (batch_size, seqlen_k, nheads, head_dim)
- v: (batch_size, seqlen_k, nheads, head_dim)
- query_padding_mask: (batch_size, seqlen_q)
- key_padding_mask: (batch_size, seqlen_k)
- attn_bias: broadcastable to (batch_size, nheads, seqlen_q, seqlen_k)
- dropout_p: float
- dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k)
- causal: whether to apply causal masking
- upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast
- output back to fp16/bf16.
- reorder_ops: whether to change the order of operations (scaling k instead of scaling k, etc.)
- without changing the math. This is to estimate the numerical error from operation
- reordering.
- Output:
- output: (batch_size, seqlen_q, nheads, head_dim)
- attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout
- """
- if causal:
- window_size = (window_size[0], 0)
- dtype_og = q.dtype
- if upcast:
- q, k, v = q.float(), k.float(), v.float()
- if q_descale is not None:
- q_descale = repeat(q_descale, "b h -> b (h g)", g = q.shape[2] // k.shape[2])
- q = (q.float() * rearrange(q_descale, "b h -> b 1 h 1")).to(dtype=q.dtype)
- if k_descale is not None:
- k = (k.float() * rearrange(k_descale, "b h -> b 1 h 1")).to(dtype=k.dtype)
- if v_descale is not None:
- v = (v.float() * rearrange(v_descale, "b h -> b 1 h 1")).to(dtype=v.dtype)
- seqlen_q, seqlen_k = q.shape[1], k.shape[1]
- k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2])
- v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2])
- d = q.shape[-1]
- if not reorder_ops:
- scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
- else:
- scores = torch.einsum("bthd,bshd->bhts", q, k / math.sqrt(d))
- if softcap > 0:
- scores = torch.tanh(scores / softcap) * softcap
- if key_padding_mask is not None:
- scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
- if window_size[0] >= 0 or window_size[1] >= 0:
- local_mask = construct_local_mask(
- seqlen_q,
- seqlen_k,
- window_size,
- sink_token_length,
- query_padding_mask,
- key_padding_mask,
- key_leftpad=key_leftpad,
- device=q.device,
- )
- scores.masked_fill_(local_mask, float("-inf"))
- if attn_bias is not None:
- scores = scores + attn_bias
- attention = torch.softmax(scores, dim=-1).to(v.dtype)
- # We want to mask here so that the attention matrix doesn't have any NaNs
- # Otherwise we'll get NaN in dV
- if query_padding_mask is not None:
- attention = attention.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
- # Some rows might be completely masked out so we fill them with zero instead of NaN
- if window_size[0] >= 0 or window_size[1] >= 0:
- attention = attention.masked_fill(torch.all(local_mask, dim=-1, keepdim=True), 0.0)
- dropout_scaling = 1.0 / (1 - dropout_p)
- # attention_drop = attention.masked_fill(~dropout_mask, 0.0) * dropout_scaling
- # output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
- if dropout_mask is not None:
- attention_drop = attention.masked_fill(~dropout_mask, 0.0)
- else:
- attention_drop = attention
- if intermediate_dtype is not None:
- attention_drop = attention_drop.to(intermediate_dtype).to(attention_drop.dtype)
- output = torch.einsum("bhts,bshd->bthd", attention_drop, v * dropout_scaling)
- if query_padding_mask is not None:
- output.masked_fill_(rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0)
- return output.to(dtype=dtype_og), attention.to(dtype=dtype_og)
- # TODO: deadlock with fp8 and local, probably bc of sink tokens
- # @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float8_e4m3fn])
- @pytest.mark.parametrize("dtype", [torch.bfloat16] + ([torch.float8_e4m3fn] if not DISABLE_FP8 else []))
- # @pytest.mark.parametrize("dtype", [torch.bfloat16])
- # @pytest.mark.parametrize("dtype", [torch.float8_e4m3fn])
- @pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
- # @pytest.mark.parametrize("mha_type", ["mha"])
- # @pytest.mark.parametrize("deterministic", [False, True])
- @pytest.mark.parametrize("deterministic", [False])
- @pytest.mark.parametrize("softcap", [0.0] + ([30.0] if not DISABLE_SOFTCAP else []))
- # @pytest.mark.parametrize("softcap", [0.0])
- @pytest.mark.parametrize("causal,local", [(False, False), (True, False)] + ([(False, True)] if not DISABLE_LOCAL else []))
- # @pytest.mark.parametrize("causal,local", [(False, False), (True, False)])
- # @pytest.mark.parametrize("causal,local", [(False, False)])
- # @pytest.mark.parametrize("V_colmajor", [False, True])
- @pytest.mark.parametrize("V_colmajor", [False])
- # @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
- # @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192, 256])
- # @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
- # @pytest.mark.parametrize('d', [56, 80])
- # @pytest.mark.parametrize("d", [64, 128, 256])
- # @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128])
- # @pytest.mark.parametrize("d", [64, 96, 128, 192])
- @pytest.mark.parametrize("d", [64, 96, 128, 192, 256])
- # @pytest.mark.parametrize("d", [128])
- @pytest.mark.parametrize(
- "seqlen_q,seqlen_k",
- [
- (64, 128),
- (128, 192),
- (256, 256),
- (239, 1),
- (799, 3),
- (113, 203),
- (113, 128),
- (128, 217),
- (113, 211),
- (108, 256),
- (256, 512),
- (384, 256),
- (640, 128),
- (512, 256),
- (1024, 1024),
- (1023, 1024),
- (1024, 1023),
- (2048, 2048),
- (8192, 8192),
- ],
- )
- # @pytest.mark.parametrize('seqlen_q,seqlen_k', [(128, 128)])
- def test_flash_attn_output(
- seqlen_q, seqlen_k, d, causal, local, softcap, V_colmajor, deterministic, mha_type, dtype
- ):
- # sink_token_length = 0 if not local else 4
- sink_token_length = 0 if not local else 0
- if V_colmajor and (seqlen_k % 16 != 0 or dtype != torch.float8_e4m3fn):
- pytest.skip("V_colmajor requires seqlen_k to be a multiple of 16 and dtype to be float8_e4m3fn")
- # if softcap > 0.0 and dtype == torch.float8_e4m3fn:
- # pytest.skip("Softcap is not supported for float8_e4m3fn")
- device = "cuda"
- # set seed
- torch.random.manual_seed(0)
- # batch_size = 40
- # nheads = 16
- batch_size = 9 if seqlen_k <= 2048 else 2
- # batch_size = 1
- nheads = 6
- # nheads = 1
- nheads_kv = nheads if mha_type == "mha" else (2 if mha_type == "gqa" else 1)
- dtype_ref = torch.bfloat16 if dtype == torch.float8_e4m3fn else dtype
- q_ref = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype_ref)
- if softcap > 0.0:
- # Ensure the values of qk are at least within softcap range.
- q_ref = (q_ref * softcap / 4)
- q_ref = q_ref.to(dtype).to(dtype_ref).requires_grad_()
- k_ref = torch.randn(batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref).requires_grad_()
- v_ref = torch.randn(batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref).requires_grad_()
- # Put window_size after QKV randn so that window_size changes from test to test
- window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
- # window_size = (-1, -1) if not local else (16, 0)
- if dtype == torch.float8_e4m3fn:
- q_descale, k_descale, v_descale = [torch.rand(batch_size, nheads_kv, device=device, dtype=torch.float32) * 2 for _ in range(3)]
- else:
- q_descale, k_descale, v_descale = None, None, None
- q, k, v = [x.detach().to(dtype).requires_grad_() for x in (q_ref, k_ref, v_ref)]
- if V_colmajor:
- v = rearrange(rearrange(v.detach(), "b s h d -> b h d s").contiguous(), "b h d s -> b s h d").requires_grad_()
- out_ref, attn_ref = attention_ref(
- q_ref,
- k_ref,
- v_ref,
- None,
- None,
- causal=causal,
- q_descale=q_descale, k_descale=k_descale, v_descale=v_descale,
- window_size=window_size,
- sink_token_length=sink_token_length,
- softcap=softcap
- )
- out_pt, attn_pt = attention_ref(
- q_ref,
- k_ref,
- v_ref,
- None,
- None,
- causal=causal,
- q_descale=q_descale, k_descale=k_descale, v_descale=v_descale,
- window_size=window_size,
- sink_token_length=sink_token_length,
- softcap=softcap,
- upcast=False,
- reorder_ops=True,
- intermediate_dtype=dtype if dtype == torch.float8_e4m3fn else None,
- )
- # qk = torch.einsum('bshd,bthd->bhst', q_ref, k_ref).float()
- # m = qk.amax(-1, keepdim=True)
- # s_tmp = torch.exp((qk - m) / math.sqrt(d))
- # exp_sum = s_tmp.sum(-1)
- # qk = torch.einsum('bthd,bshd->bhts', q_ref.float() / math.sqrt(d), k_ref.float())
- # lse_ref = torch.logsumexp(qk, dim=-1)
- print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
- print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
- pack_gqa_vals = [False, True] if not DISABLE_PACKGQA else [False]
- num_splits_vals = [1, 3] if not DISABLE_SPLIT else [1]
- for pack_gqa, num_splits in itertools.product(pack_gqa_vals, num_splits_vals):
- out, lse = flash_attn_func(
- q,
- k,
- v,
- causal=causal,
- q_descale=q_descale, k_descale=k_descale, v_descale=v_descale,
- window_size=window_size,
- sink_token_length=sink_token_length,
- softcap=softcap,
- pack_gqa=pack_gqa,
- num_splits=num_splits
- )
- print(f"Output max diff: {(out - out_ref).abs().max().item()}")
- print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
- # if not causal:
- # print(f"LSE max diff: {(lse - lse_ref).abs().max().item()}")
- # breakpoint()
- # Check that FlashAttention's numerical error is at most twice the numerical error
- # of a Pytorch implementation.
- multiple = 2 if dtype != torch.float8_e4m3fn else 3
- abs_tol = 1e-4 if softcap == 0.0 else 3e-4
- assert (out - out_ref).abs().max().item() <= multiple * (out_pt - out_ref).abs().max().item() + abs_tol
- if not DISABLE_BACKWARD and dtype != torch.float8_e4m3fn and not V_colmajor:
- g = torch.randn_like(out)
- do_o = ((g.float() * out.float()).sum(-1)).transpose(1, 2)
- import flashattn_hopper_cuda
- dq, dk, dv, softmax_d, dq_accum, dk_accum, dv_accum = flashattn_hopper_cuda.bwd(
- g,
- q,
- k,
- v,
- out,
- lse,
- None,
- None,
- None,
- d ** (-0.5),
- causal,
- window_size[0], window_size[1],
- sink_token_length,
- softcap,
- deterministic,
- )
- # print(f"dO_O max diff: {(softmax_d - do_o).abs().max().item()}")
- # assert (softmax_d - do_o).abs().max().item() <= 1e-5
- # assert dq_accum.abs().max().item() == 0.0
- # dS = torch.einsum('bthd,bshd->bhts', g.float(), v.float())
- # P = torch.softmax(qk, -1)
- # dP = P * (dS - do_o.transpose(1, 2).unsqueeze(1))
- # dQ = torch.einsum('bhts,bshd->bthd', dP, k.float())
- # dV = torch.einsum('bhts,bthd->bshd', P, g.float())
- # dK = torch.einsum('bhts,bthd->bshd', dP, q.float())
- # dq, dk, dv = torch.autograd.grad(out, (q, k, v), g)
- dq_ref, dk_ref, dv_ref = torch.autograd.grad(out_ref, (q_ref, k_ref, v_ref), g)
- dq_pt, dk_pt, dv_pt = torch.autograd.grad(out_pt, (q_ref, k_ref, v_ref), g)
- print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
- print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
- print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
- print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
- print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
- print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
- print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
- print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
- print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
- print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
- print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
- print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
- # breakpoint()
- if not DISABLE_BACKWARD and dtype != torch.float8_e4m3fn and not V_colmajor:
- multiple = 2
- assert (dq - dq_ref).abs().max().item() <= multiple * (dq_pt - dq_ref).abs().max().item() + abs_tol
- assert (dk - dk_ref).abs().max().item() <= multiple * (dk_pt - dk_ref).abs().max().item() + abs_tol
- assert (dv - dv_ref).abs().max().item() <= multiple * (dv_pt - dv_ref).abs().max().item() + abs_tol
- # @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float8_e4m3fn])
- @pytest.mark.parametrize("dtype", [torch.bfloat16] + ([torch.float8_e4m3fn] if not DISABLE_FP8 else []))
- # @pytest.mark.parametrize("dtype", [torch.bfloat16])
- # @pytest.mark.parametrize("dtype", [torch.float8_e4m3fn])
- @pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
- # @pytest.mark.parametrize("mha_type", ["mha"])
- # @pytest.mark.parametrize("deterministic", [False, True])
- @pytest.mark.parametrize("deterministic", [False])
- @pytest.mark.parametrize("softcap", [0.0] + ([30.0] if not DISABLE_SOFTCAP else []))
- # @pytest.mark.parametrize("softcap", [0.0])
- @pytest.mark.parametrize("causal,local", [(False, False), (True, False)] + ([(False, True)] if not DISABLE_LOCAL else []))
- # @pytest.mark.parametrize("causal,local", [(False, False), (True, False)])
- # @pytest.mark.parametrize("causal,local", [(False, False)])
- # @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
- # @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192, 256])
- # @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
- # @pytest.mark.parametrize('d', [56, 80])
- # @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128])
- # @pytest.mark.parametrize("d", [64, 96, 128])
- @pytest.mark.parametrize("d", [64, 96, 128, 192, 256])
- # @pytest.mark.parametrize("d", [128])
- @pytest.mark.parametrize(
- "seqlen_q,seqlen_k",
- [
- (64, 128),
- (128, 128),
- (256, 256),
- (113, 203),
- (128, 217),
- (113, 211),
- (108, 256),
- (256, 512),
- (307, 256),
- (640, 128),
- (512, 256),
- (1024, 1024),
- (1023, 1024),
- (1024, 1023),
- (2048, 2048),
- (8192, 8192),
- ],
- )
- def test_flash_attn_varlen_output(
- seqlen_q, seqlen_k, d, causal, local, softcap, deterministic, mha_type, dtype
- ):
- if softcap > 0.0 and dtype == torch.float8_e4m3fn:
- pytest.skip("Softcap is not supported for float8_e4m3fn")
- device = "cuda"
- # set seed
- torch.random.manual_seed(seqlen_q + seqlen_k + d + int(causal) * 2 + int(local))
- # batch_size = 40
- # nheads = 16
- batch_size = 9 if seqlen_q <= 2048 else 2
- nheads = 6
- # batch_size = 2
- # nheads = 2
- nheads_kv = nheads if mha_type == "mha" else (2 if mha_type == "gqa" else 1)
- dtype_ref = torch.bfloat16 if dtype == torch.float8_e4m3fn else dtype
- q_ref = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype_ref)
- if softcap > 0.0:
- # Ensure the values of qk are at least within softcap range.
- q_ref = (q_ref * softcap / 4).detach().requires_grad_()
- q_ref = q_ref.to(dtype).to(dtype_ref).requires_grad_()
- k_ref = torch.randn(batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref).requires_grad_()
- v_ref = torch.randn(batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref).requires_grad_()
- # Put window_size after QKV randn so that window_size changes from test to test
- window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
- if dtype == torch.float8_e4m3fn:
- q_descale, k_descale, v_descale = [torch.rand(batch_size, nheads_kv, device=device, dtype=torch.float32) * 2 for _ in range(3)]
- else:
- q_descale, k_descale, v_descale = None, None, None
- q, k, v = [x.detach().requires_grad_() for x in (q_ref, k_ref, v_ref)]
- query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
- key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random")
- (
- q_unpad,
- k_unpad,
- v_unpad,
- cu_seqlens_q,
- cu_seqlens_k,
- max_seqlen_q,
- max_seqlen_k,
- q,
- k,
- v,
- output_pad_fn,
- dq_pad_fn,
- dk_pad_fn,
- ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
- q_unpad, k_unpad, v_unpad = [x.detach().to(dtype).requires_grad_() for x in (q_unpad, k_unpad, v_unpad)]
- out_unpad, lse = flash_attn_varlen_func(
- q_unpad,
- k_unpad,
- v_unpad,
- cu_seqlens_q,
- cu_seqlens_k,
- max_seqlen_q,
- max_seqlen_k,
- causal=causal,
- q_descale=q_descale,
- k_descale=k_descale, v_descale=v_descale,
- window_size=window_size,
- softcap=softcap,
- )
- out = output_pad_fn(out_unpad)
- out_ref, attn_ref = attention_ref(
- q_ref,
- k_ref,
- v_ref,
- query_padding_mask,
- key_padding_mask,
- causal=causal,
- q_descale=q_descale, k_descale=k_descale, v_descale=v_descale,
- window_size=window_size,
- softcap=softcap
- )
- out_pt, attn_pt = attention_ref(
- q_ref,
- k_ref,
- v_ref,
- query_padding_mask,
- key_padding_mask,
- causal=causal,
- q_descale=q_descale, k_descale=k_descale, v_descale=v_descale,
- window_size=window_size,
- softcap=softcap,
- upcast=False,
- reorder_ops=True,
- intermediate_dtype=dtype if dtype == torch.float8_e4m3fn else None,
- )
- print(f"Output max diff: {(out - out_ref).abs().max().item()}")
- print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
- print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
- print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
- # if not causal:
- # print(f"LSE max diff: {(lse - lse_ref).abs().max().item()}")
- # breakpoint()
- if not DISABLE_BACKWARD and dtype != torch.float8_e4m3fn:
- g_unpad = torch.randn_like(out_unpad)
- do_o = ((g_unpad.float() * out_unpad.float()).sum(-1)).transpose(-1, -2)
- import flashattn_hopper_cuda
- dq_unpad, dk_unpad, dv_unpad, softmax_d, dq_accum, lse_log2 = flashattn_hopper_cuda.bwd_varlen(
- g_unpad,
- q_unpad,
- k_unpad,
- v_unpad,
- out_unpad,
- lse,
- None,
- None,
- None,
- cu_seqlens_q,
- cu_seqlens_k,
- None, None,
- max_seqlen_q,
- max_seqlen_k,
- d ** (-0.5),
- causal,
- window_size[0], window_size[1],
- softcap,
- deterministic,
- )
- dq = dq_pad_fn(dq_unpad)
- dk = dk_pad_fn(dk_unpad)
- dv = dk_pad_fn(dv_unpad)
- # print(f"dO_O max diff: {(softmax_d - do_o).abs().max().item()}")
- # assert (softmax_d - do_o).abs().max().item() <= 1e-5
- # assert dq_accum.abs().max().item() == 0.0
- g = output_pad_fn(g_unpad)
- # qk = torch.einsum('bthd,bshd->bhts', q / (d ** 0.5), k).float()
- # qk = torch.masked_fill(qk, rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
- # dS = torch.einsum('bthd,bshd->bhts', g.float(), v.float())
- # P = torch.softmax(qk, -1)
- # dP = P * (dS - (g.float() * out.float()).sum(-1).transpose(1, 2).unsqueeze(-1))
- # dQ = torch.einsum('bhts,bshd->bthd', dP, k.float())
- # dV = torch.einsum('bhts,bthd->bshd', P, g.float())
- # dK = torch.einsum('bhts,bthd->bshd', dP, q.float())
- # dq, dk, dv = torch.autograd.grad(out, (q, k, v), g)
- dq_ref, dk_ref, dv_ref = torch.autograd.grad(out_ref, (q_ref, k_ref, v_ref), g)
- dq_pt, dk_pt, dv_pt = torch.autograd.grad(out_pt, (q_ref, k_ref, v_ref), g)
- print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
- print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
- print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
- print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
- print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
- print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
- print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
- print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
- print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
- print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
- print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
- print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
- # breakpoint()
- # Check that FlashAttention's numerical error is at most twice the numerical error
- # of a Pytorch implementation.
- assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
- if not DISABLE_BACKWARD and dtype != torch.float8_e4m3fn:
- multiple = 2
- assert (dq - dq_ref).abs().max().item() <= multiple * (dq_pt - dq_ref).abs().max().item()
- assert (dk - dk_ref).abs().max().item() <= multiple * (dk_pt - dk_ref).abs().max().item()
- assert (dv - dv_ref).abs().max().item() <= multiple * (dv_pt - dv_ref).abs().max().item()
- # @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16, torch.float8_e4m3fn])
- @pytest.mark.parametrize("dtype", [torch.bfloat16] + ([torch.float8_e4m3fn] if not DISABLE_FP8 else []))
- # @pytest.mark.parametrize("dtype", [torch.bfloat16])
- # @pytest.mark.parametrize("dtype", [torch.float8_e4m3fn])
- @pytest.mark.parametrize("num_splits", [1] + ([0] if not DISABLE_SPLIT else []))
- # @pytest.mark.parametrize("num_splits", [1])
- @pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
- # @pytest.mark.parametrize("mha_type", ["mha"])
- @pytest.mark.parametrize("new_kv", [False] + ([True] if not DISABLE_APPENDKV else []))
- # @pytest.mark.parametrize("new_kv", [True])
- # @pytest.mark.parametrize("local", [False, True])
- @pytest.mark.parametrize("causal,local", [(False, False), (True, False)] + ([(False, True)] if not DISABLE_LOCAL else []))
- # @pytest.mark.parametrize("causal,local", [(False, False), (True, False)])
- # @pytest.mark.parametrize("causal,local", [(False, False)])
- @pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True, False] if not DISABLE_APPENDKV else [True])
- # @pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True])
- @pytest.mark.parametrize("rotary_interleaved", [False, True] if not DISABLE_APPENDKV else [False])
- # @pytest.mark.parametrize("rotary_interleaved", [True])
- @pytest.mark.parametrize("rotary_fraction", [0.0, 0.5, 1.0] if not DISABLE_APPENDKV else [0.0])
- # @pytest.mark.parametrize("rotary_fraction", [0.0])
- @pytest.mark.parametrize("page_size", [None] + ([1, 4, 128] if not DISABLE_PAGEDKV else []))
- # @pytest.mark.parametrize("page_size", [None])
- @pytest.mark.parametrize("has_leftpad", [False, True])
- # @pytest.mark.parametrize("has_leftpad", [False])
- @pytest.mark.parametrize("has_batch_idx", [False, True])
- # @pytest.mark.parametrize("has_batch_idx", [False])
- @pytest.mark.parametrize("varlen_q", [False, True])
- # @pytest.mark.parametrize("varlen_q", [False])
- # @pytest.mark.parametrize("d", [32, 59, 64, 80, 128, 256])
- # @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
- # @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
- # @pytest.mark.parametrize('d', [56, 80])
- @pytest.mark.parametrize("d", [128])
- @pytest.mark.parametrize(
- "seqlen_q,seqlen_k",
- [
- (1, 128),
- (1, 339),
- (3, 1024),
- (64, 800),
- (64, 256),
- (3, 799),
- (64, 2048),
- (16, 20000),
- (1, 128 * 1024),
- (16, 128 * 1024),
- (128, 128),
- (256, 512), # To test appending KV with more than 1 block
- (2048, 3577), # Enough tile to test persistent scheduler
- ],
- )
- # @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
- def test_flash_attn_kvcache(
- seqlen_q,
- seqlen_k,
- d,
- varlen_q,
- has_batch_idx,
- has_leftpad,
- page_size,
- rotary_fraction,
- rotary_interleaved,
- seqlen_new_eq_seqlen_q,
- causal,
- local,
- new_kv,
- mha_type,
- num_splits,
- dtype,
- ):
- if page_size is not None and seqlen_k % page_size != 0:
- pytest.skip()
- if seqlen_q > seqlen_k and new_kv:
- pytest.skip()
- if not new_kv and rotary_fraction > 0.0:
- pytest.skip()
- device = "cuda"
- # set seed
- torch.random.manual_seed(0)
- batch_size = 5
- # batch_size = 1
- batch_size_cache = batch_size if not has_batch_idx else batch_size * 2
- nheads = 6
- # nheads = 1
- # rotary_dim must be a multiple of 16, and must be <= d
- rotary_dim = math.floor(int(rotary_fraction * d) / 16) * 16
- nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
- assert nheads % nheads_k == 0
- dtype_ref = torch.bfloat16 if dtype == torch.float8_e4m3fn else dtype
- q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref)
- if varlen_q:
- query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
- q_unpad, indices_q, cu_seqlens_q, max_seqlen_q, *rest = unpad_input(q, query_padding_mask)
- output_pad_fn = lambda output_unpad: pad_input(
- output_unpad, indices_q, batch_size, seqlen_q
- )
- else:
- query_padding_mask = None
- q_unpad = q
- cu_seqlens_q, max_seqlen_q = None, None
- # Put window_size after QKV randn so that window_size changes from test to test
- window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
- seqlen_new = seqlen_q if seqlen_new_eq_seqlen_q else torch.randint(1, seqlen_q + 1, (1,)).item()
- if new_kv:
- k = torch.randn(batch_size, seqlen_new, nheads_k, d, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref)
- v = torch.randn(batch_size, seqlen_new, nheads_k, d, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref)
- else:
- k, v = None, None
- if page_size is None:
- k_cache = torch.randn(batch_size_cache, seqlen_k, nheads_k, d, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref)
- v_cache = torch.randn(batch_size_cache, seqlen_k, nheads_k, d, device=device, dtype=dtype_ref).to(dtype).to(dtype_ref)
- page_table = None
- else:
- (
- k_cache,
- v_cache,
- page_table,
- k_cache_paged,
- v_cache_paged,
- num_blocks,
- ) = _generate_block_kvcache(
- seqlen_k, page_size, batch_size_cache, nheads_k, d, device, dtype_ref
- )
- cache_seqlens = torch.randint(
- 0 if new_kv else 1,
- # If we don't use seqlen_q in the case of causal and rotary, cos/sin won't be long enough
- (
- (seqlen_k - (seqlen_q if (causal or local) and rotary_dim > 1 else seqlen_new) + 1)
- if new_kv
- else (seqlen_k + 1)
- ),
- (batch_size,),
- dtype=torch.int32,
- device=device,
- )
- if has_leftpad:
- cache_leftpad = torch.cat([torch.randint(0, cache_seqlens[i].item(), (1,), dtype=torch.int32, device=device)
- if cache_seqlens[i].item() > 0 else torch.zeros(1, dtype=torch.int32, device=device)
- for i in range(batch_size)])
- else:
- cache_leftpad = None
- if has_batch_idx:
- cache_batch_idx = torch.randperm(batch_size_cache, dtype=torch.int32, device=device)[
- :batch_size
- ]
- else:
- cache_batch_idx = None
- arange = rearrange(torch.arange(seqlen_k, device=device), "s -> 1 s")
- cache_seqlens_expanded = rearrange(cache_seqlens, "b -> b 1")
- key_padding_mask = arange < cache_seqlens_expanded + (seqlen_new if new_kv else 0)
- if has_leftpad:
- key_padding_mask = torch.logical_and(
- key_padding_mask, arange >= cache_leftpad.unsqueeze(-1).expand(-1, seqlen_k)
- )
- # cache_seqlens = torch.tensor([64], dtype=torch.int32, device=device)
- if rotary_dim > 0:
- angle = (
- torch.rand(
- seqlen_k if page_size is None else num_blocks * page_size,
- rotary_dim // 2,
- device=device,
- )
- * 2
- * math.pi
- )
- cos = torch.cos(angle).to(dtype=dtype_ref).to(dtype).to(dtype_ref)
- sin = torch.sin(angle).to(dtype=dtype_ref).to(dtype).to(dtype_ref)
- if causal or local:
- q_ro = apply_rotary_emb(
- q, cos, sin, seqlen_offsets=cache_seqlens, interleaved=rotary_interleaved
- )
- else:
- q_ro = rearrange(
- apply_rotary_emb(
- rearrange(q, "b s h d -> b 1 (s h) d"),
- cos,
- sin,
- seqlen_offsets=cache_seqlens,
- interleaved=rotary_interleaved,
- ),
- "b 1 (s h) d -> b s h d",
- s=seqlen_q,
- )
- # q_ro = q
- k_ro = apply_rotary_emb(
- k, cos, sin, seqlen_offsets=cache_seqlens, interleaved=rotary_interleaved
- )
- else:
- cos, sin = None, None
- q_ro, k_ro = q, k
- # k_cache[:, 64:] = -1
- k_cache_ref = (k_cache if not has_batch_idx else k_cache[cache_batch_idx]).clone()
- v_cache_ref = (v_cache if not has_batch_idx else v_cache[cache_batch_idx]).clone()
- if new_kv:
- update_mask = torch.logical_and(
- cache_seqlens_expanded <= arange, arange < cache_seqlens_expanded + seqlen_new
- )
- k_cache_ref[update_mask] = rearrange(k_ro, "b s ... -> (b s) ...")
- v_cache_ref[update_mask] = rearrange(v, "b s ... -> (b s) ...")
- k_cache_rep = repeat(k_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k)
- v_cache_rep = repeat(v_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k)
- out_ref, _ = attention_ref(
- q_ro,
- k_cache_rep,
- v_cache_rep,
- query_padding_mask,
- key_padding_mask,
- causal=causal,
- window_size=window_size,
- key_leftpad=cache_leftpad,
- )
- out_pt, _ = attention_ref(
- q_ro,
- k_cache_rep,
- v_cache_rep,
- query_padding_mask,
- key_padding_mask,
- causal=causal,
- window_size=window_size,
- upcast=False,
- reorder_ops=True,
- key_leftpad=cache_leftpad,
- intermediate_dtype=dtype if dtype == torch.float8_e4m3fn else None
- )
- q = q.to(dtype)
- q_unpad = q_unpad.to(dtype) if varlen_q else None
- k_cache = k_cache.to(dtype)
- v_cache = v_cache.to(dtype)
- k_cache_paged = k_cache_paged.to(dtype) if page_size is not None else None
- v_cache_paged = v_cache_paged.to(dtype) if page_size is not None else None
- k = k.to(dtype) if k is not None else None
- v = v.to(dtype) if v is not None else None
- cos = cos.to(dtype) if cos is not None else None
- sin = sin.to(dtype) if sin is not None else None
- out, lse, *rest = flash_attn_with_kvcache(
- q if not varlen_q else q_unpad,
- k_cache if page_size is None else k_cache_paged,
- v_cache if page_size is None else v_cache_paged,
- k,
- v,
- rotary_cos=cos,
- rotary_sin=sin,
- cache_seqlens=cache_seqlens,
- cache_batch_idx=cache_batch_idx,
- cache_leftpad=cache_leftpad,
- page_table=page_table,
- cu_seqlens_q=cu_seqlens_q,
- max_seqlen_q=max_seqlen_q,
- causal=causal,
- window_size=window_size,
- rotary_interleaved=rotary_interleaved,
- num_splits=num_splits,
- return_softmax_lse=True
- )
- if varlen_q:
- out = output_pad_fn(out)
- # out = flash_attn_with_kvcache(
- # q, k_cache, v_cache, cache_seqlens=cache_seqlens, causal=causal, window_size=window_size
- # )
- # out = flash_attn_with_kvcache(q, k_cache, v_cache, causal=causal, window_size=window_size)
- # qk = torch.einsum("bqhd,bkhd->bhqk", q, k_cache_ref)
- # m = qk.amax(-1, keepdim=True)
- # s_tmp = torch.exp((qk - m) / math.sqrt(d))
- # o1 = torch.einsum('bhst,bthd->bshd', s_tmp, v_cache_ref)
- # lse_ref = torch.logsumexp(qk / math.sqrt(d), -1)
- # probs = torch.softmax(qk, dim=-1)
- print(f"Output max diff: {(out - out_ref).abs().max().item()}")
- print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
- print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
- print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
- # breakpoint()
- # Check that FlashAttention's numerical error is at most twice the numerical error
- # of a Pytorch implementation.
- if new_kv:
- if page_size is None:
- k_cache_select = (
- k_cache.to(dtype_ref) if not has_batch_idx else k_cache.to(dtype_ref)[cache_batch_idx]
- )
- v_cache_select = (
- v_cache.to(dtype_ref) if not has_batch_idx else v_cache.to(dtype_ref)[cache_batch_idx]
- )
- else:
- k_cache_select = rearrange(
- k_cache_paged.to(dtype_ref)[(page_table if not has_batch_idx else page_table[cache_batch_idx]).flatten()],
- "(b nblocks) block_size ... -> b (nblocks block_size) ...",
- b=batch_size,
- )[:, :seqlen_k].to(dtype_ref)
- v_cache_select = rearrange(
- v_cache_paged.to(dtype_ref)[(page_table if not has_batch_idx else page_table[cache_batch_idx]).flatten()],
- "(b nblocks) block_size ... -> b (nblocks block_size) ...",
- b=batch_size,
- )[:, :seqlen_k].to(dtype_ref)
- k_cache_ref = k_cache_ref.to(dtype).to(dtype_ref)
- v_cache_ref = v_cache_ref.to(dtype).to(dtype_ref)
- if dtype is not torch.float8_e4m3fn:
- assert torch.equal(v_cache_select, v_cache_ref)
- else:
- assert torch.allclose(v_cache_select, v_cache_ref, rtol=1e-3, atol=1e-3)
- # breakpoint()
- # if rotary_dim == 0 and dtype is not torch.float8_e4m3fn:
- if rotary_dim == 0:
- assert torch.equal(k_cache_select, k_cache_ref)
- else:
- # if not torch.allclose(k_cache_select, k_cache_ref, rtol=1e-3, atol=1e-3):
- # breakpoint()
- if dtype is not torch.float8_e4m3fn:
- assert torch.allclose(k_cache_select, k_cache_ref, rtol=1e-3, atol=1e-3)
- else:
- assert torch.allclose(k_cache_select, k_cache_ref, rtol=1e-1, atol=1e-1)
- mult = 4 if dtype == torch.float8_e4m3fn else 2
- assert (out - out_ref).abs().max().item() <= mult * (out_pt - out_ref).abs().max().item() + 1e-5
- mult_mean = 3 if dtype == torch.float8_e4m3fn else 1.5
- assert (out - out_ref).abs().mean().item() <= mult_mean * (out_pt - out_ref).abs().mean().item()
- def _generate_block_kvcache(seqlen_k, page_size, batch_size, nheads_k, d, device, dtype):
- num_blocks = math.ceil(seqlen_k / page_size) * batch_size * 3
- k_cache_paged = torch.randn(
- num_blocks, page_size, nheads_k, d, device=device, dtype=dtype
- )
- v_cache_paged = torch.randn(
- num_blocks, page_size, nheads_k, d, device=device, dtype=dtype
- )
- page_table = rearrange(
- torch.randperm(num_blocks, dtype=torch.int32, device=device),
- "(b nblocks) -> b nblocks",
- b=batch_size,
- )
- k_cache = rearrange(
- k_cache_paged[page_table.flatten()],
- "(b nblocks) block_size ... -> b (nblocks block_size) ...",
- b=batch_size,
- )[:, :seqlen_k]
- v_cache = rearrange(
- v_cache_paged[page_table.flatten()],
- "(b nblocks) block_size ... -> b (nblocks block_size) ...",
- b=batch_size,
- )[:, :seqlen_k]
- return k_cache, v_cache, page_table, k_cache_paged, v_cache_paged, num_blocks
- @pytest.mark.parametrize("dtype", [torch.bfloat16])
- @pytest.mark.parametrize("causal", [False, True])
- # @pytest.mark.parametrize('causal', [False])
- @pytest.mark.parametrize('d', [128])
- @pytest.mark.parametrize(
- "seqlen_q,seqlen_k",
- [
- (64, 8192),
- ],
- )
- def test_flash_attn_cluster(seqlen_q, seqlen_k, d, causal, dtype):
- device = "cuda"
- torch.random.manual_seed(0)
- batch_size = 2
- nheads = 16
- nheads_kv = 4
- # There was a bug where this would cause "unspecified launch failure" due to Cluster
- q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype)
- k = torch.randn(batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype)
- v = torch.randn(batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype)
- for _ in range(100):
- flash_attn_func(q, k, v, causal=causal)
- # @pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
- @pytest.mark.parametrize("dtype", [torch.bfloat16])
- @pytest.mark.parametrize("causal", [False, True])
- # @pytest.mark.parametrize('causal', [False])
- @pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
- # @pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128])
- # @pytest.mark.parametrize('d', [32, 56, 64, 80, 96, 128])
- # @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192])
- # @pytest.mark.parametrize('d', [80])
- @pytest.mark.parametrize(
- "seqlen_q,seqlen_k",
- [
- (1, 239),
- (239, 1),
- (3, 799),
- (799, 3),
- (1024, 128),
- (97, 97),
- (128, 128),
- (200, 200),
- (256, 256),
- (257, 257),
- (384, 384),
- (512, 512),
- (768, 768),
- (1024, 1024),
- (2048, 2048),
- ],
- )
- def test_flash_attn_race_condition(seqlen_q, seqlen_k, d, causal, dtype):
- device = "cuda"
- # set seed
- torch.random.manual_seed(0)
- # Simulate under memory load
- dummy = torch.empty(70 * 1024 ** 3, dtype=torch.uint8, device=device)
- batch_size = 60 # Sometimes we need large batch size for the race conditions to trigger
- nheads = 4
- q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
- k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
- v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
- torch.random.manual_seed(42)
- out0, lse0 = flash_attn_func(q, k, v, causal=causal)
- g = torch.randn_like(out0)
- dq0, dk0, dv0 = torch.autograd.grad(out0, (q, k, v), g)
- # Numerical error if we just do any arithmetic on dq
- dq_atol = 2 * ((dq0 + 0.3 - 0.3) - dq0).abs().max().item()
- for i in range(1000):
- torch.random.manual_seed(42)
- out, lse = flash_attn_func(q, k, v, causal=causal)
- assert torch.equal(out, out0)
- assert torch.equal(lse, lse0)
- dq, dk, dv = torch.autograd.grad(out, (q, k, v), g)
- dq_equal = torch.allclose(dq, dq0, atol=dq_atol)
- if not dq_equal:
- print(f"Iter {i}, {dq_atol = }, dQ max diff: {(dq - dq0).abs().max().item()}")
- # breakpoint()
- assert torch.equal(dv, dv0)
- assert torch.equal(dk, dk0)
- assert dq_equal
- def attention_combine_ref(out_partial, lse_partial):
- """
- out_partial: (num_splits, batch_size, seqlen, nheads, d)
- lse_partial: (num_splits, batch_size, nheads, seqlen)
- """
- lse = torch.logsumexp(lse_partial, dim=0)
- scale = torch.exp(lse_partial - lse)
- scale = torch.where(torch.isinf(scale) | torch.isnan(scale), torch.zeros_like(scale), scale)
- out = (scale.unsqueeze(-1) * out_partial).sum(0)
- return out, lse
- @pytest.mark.parametrize("dtype", [torch.float32, torch.float16, torch.bfloat16])
- # @pytest.mark.parametrize("dtype", [torch.float32])
- # @pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
- @pytest.mark.parametrize("d", [64, 96, 128, 192, 256])
- # @pytest.mark.parametrize("d", [128])
- @pytest.mark.parametrize("seqlen", [1, 2, 3, 32, 64, 256, 113, 108, 640, 1024, 2048])
- # @pytest.mark.parametrize("seqlen", [12, 32, 64, 256, 112, 108, 640, 1024, 2048, 8192])
- # @pytest.mark.parametrize("seqlen", [15])
- @pytest.mark.parametrize("num_splits", [1, 2, 3, 5, 17, 32, 55, 97, 155])
- # @pytest.mark.parametrize("num_splits", [1, 2, 3, 5, 11])
- # @pytest.mark.parametrize("num_splits", [128])
- def test_flash_attn_combine(num_splits, seqlen, d, dtype):
- if DISABLE_SPLIT:
- pytest.skip()
- device = "cuda"
- # set seed
- torch.random.manual_seed(1)
- batch_size = 5
- nheads = 16
- # batch_size = 1
- # nheads = 1
- out_partial = torch.randn(num_splits * 2, batch_size, nheads, seqlen, d, device=device, dtype=torch.float32).transpose(2, 3)[:num_splits] # To test non-contiguous tensor
- lse_partial = torch.randn(num_splits, batch_size, nheads * 2, seqlen, device=device, dtype=torch.float32).transpose(-1, -2)[:, :, :, :nheads] # To test non-contiguous tensor
- # To test short-circuiting based on num_splits
- lse_partial[num_splits // 2:, :batch_size // 3] = -float("inf")
- out, lse = flash_attn_combine(out_partial, lse_partial, out_dtype=dtype)
- out_ref, lse_ref = attention_combine_ref(out_partial, lse_partial)
- out_pt = out_ref.to(dtype)
- print(f"LSE max diff: {(lse - lse_ref).abs().max().item()}")
- print(f"LSE mean diff: {(lse - lse_ref).abs().mean().item()}")
- print(f"Output max diff: {(out - out_ref).abs().max().item()}")
- print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
- print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
- print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
- # breakpoint()
- assert torch.allclose(lse, lse_ref, atol=1e-5, rtol=1e-5)
- multiple = 2
- assert ((out - out_ref).abs().max().item() <= multiple * (out_pt - out_ref).abs().max().item()) or torch.allclose(out, out_pt, atol=1e-5, rtol=1e-5)
- # from flash_attn.utils.benchmark import pytorch_profiler
- # # pytorch_profiler(torch.sum, lse_partial)
- # pytorch_profiler(flash_attn_combine, out_partial, lse_partial)
- # pytorch_profiler(torch.sum, out_partial)
|