123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050 |
- /******************************************************************************
- * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
- ******************************************************************************/
- #pragma once
- #include <cutlass/cutlass.h>
- #include <cutlass/array.h>
- #include <cutlass/numeric_types.h>
- #include <cutlass/numeric_conversion.h>
- #include <cutlass/barrier.h>
- #include "cutlass/pipeline/pipeline.hpp"
- #include "cute/tensor.hpp"
- #include "cutlass/gemm/collective/builders/sm90_common.inl"
- #include "named_barrier.hpp"
- #include "seqlen.h"
- #include "mask.h"
- #include "softmax.h"
- #include "utils.h"
- #include "copy_sm90_bulk_reduce.hpp"
- namespace flash {
- template <bool A, class Mma, class Tensor0>
- CUTLASS_DEVICE
- auto mma_partition_fragment_AB(Mma const& mma, Tensor0 const& tensor0) {
- if constexpr (A) {
- return mma.partition_fragment_A(tensor0);
- } else {
- return mma.partition_fragment_B(tensor0);
- }
- }
- using namespace cute;
- template <int Stages, int Stages_dO, int Stages_dS, class ClusterShape_, class TileShape_MNK_, class Element_, class ElementAccum_, class ArchTag_,
- bool Is_causal_, bool Is_local_, bool Has_softcap_, bool Varlen_, bool Deterministic,
- bool SdP_swapAB_, bool dKV_swapAB_, bool dQ_swapAB_,
- int NumMmaWarpGroups=2, int AtomLayoutMSdP=1, int AtomLayoutNdKV=2, int AtomLayoutMdQ=1>
- struct CollectiveMainloopBwd {
- static constexpr int kStages = Stages;
- static constexpr int kStages_dO = Stages_dO;
- static constexpr int kStages_dS = Stages_dS;
- static_assert(kStages >= kStages_dO);
- static_assert(Stages_dS == 1 || Stages_dS == kStages);
- using ClusterShape = ClusterShape_;
- using TileShape_MNK = TileShape_MNK_;
- using Element = Element_;
- using ElementAccum = ElementAccum_;
- using ArchTag = ArchTag_;
- static constexpr bool Is_causal = Is_causal_;
- static constexpr bool Is_local = Is_local_;
- static constexpr bool Has_softcap = Has_softcap_;
- static constexpr bool Varlen = Varlen_;
- using SeqlenInfo_t = flash::SeqlenInfoQK<Varlen, CUTE_STATIC_V(get<0>(TileShape_MNK{}))>;
- static constexpr bool SdP_swapAB = SdP_swapAB_;
- static constexpr bool dKV_swapAB = dKV_swapAB_;
- static constexpr bool dQ_swapAB = dQ_swapAB_;
- static constexpr bool Q_dO_same_stages = kStages == kStages_dO;
- static constexpr int kBlockM = get<0>(TileShape_MNK{});
- static constexpr int kBlockN = get<1>(TileShape_MNK{});
- static constexpr int kHeadDim = get<2>(TileShape_MNK{});
- static_assert(ArchTag::kMinComputeCapability >= 90);
- static_assert(get<0>(ClusterShape{}) == 1 && get<2>(ClusterShape{}) == 1);
- static constexpr int NumMmaThreads = NumMmaWarpGroups * cutlass::NumThreadsPerWarpGroup;
- static_assert(NumMmaWarpGroups % AtomLayoutMSdP == 0);
- static_assert(NumMmaWarpGroups % AtomLayoutNdKV == 0);
- static_assert(NumMmaWarpGroups % AtomLayoutMdQ == 0);
- static constexpr bool Mma_dKV_is_RS = AtomLayoutMSdP == 1 && AtomLayoutNdKV == NumMmaWarpGroups && SdP_swapAB && !dKV_swapAB;
- static constexpr bool Mma_dQ_is_RS = AtomLayoutMSdP == NumMmaWarpGroups && AtomLayoutMdQ == NumMmaWarpGroups && !SdP_swapAB && !dQ_swapAB; // If dQ_swapAB we can't use RS
- static constexpr GMMA::Major PdS_Major = GMMA::Major::K;
- // static constexpr GMMA::Major PdS_Major = GMMA::Major::MN;
- static constexpr GMMA::Major PdSt_Major = PdS_Major == GMMA::Major::K ? GMMA::Major::MN : GMMA::Major::K;
- using TileShapeAtomSdP = std::conditional_t<
- !SdP_swapAB,
- Shape<Int<kBlockM>, Int<kBlockN / (NumMmaWarpGroups / AtomLayoutMSdP)>, Int<kHeadDim>>,
- Shape<Int<kBlockN>, Int<kBlockM / AtomLayoutMSdP>, Int<kHeadDim>>
- >;
- using AtomLayoutSdP = std::conditional_t<
- !SdP_swapAB,
- Layout<Shape<Int<AtomLayoutMSdP>, Int<NumMmaWarpGroups / AtomLayoutMSdP>, _1>>,
- Layout<Shape<Int<NumMmaWarpGroups / AtomLayoutMSdP>, Int<AtomLayoutMSdP>, _1>>
- >;
- using TiledMmaSdP = decltype(cute::make_tiled_mma(
- cute::GMMA::ss_op_selector<Element, Element, ElementAccum, TileShapeAtomSdP>(),
- AtomLayoutSdP{}));
- using TiledMmadPRS = decltype(cute::make_tiled_mma(
- cute::GMMA::rs_op_selector<Element, Element, ElementAccum, TileShapeAtomSdP>(),
- AtomLayoutSdP{}));
- using TileShapeAtomdKV = std::conditional_t<
- !dKV_swapAB,
- Shape<Int<kBlockN>, Int<kHeadDim / (NumMmaWarpGroups / AtomLayoutNdKV)>, Int<kBlockM>>,
- Shape<Int<kHeadDim>, Int<kBlockN / AtomLayoutNdKV>, Int<kBlockM>>
- >;
- using AtomLayoutdKV = std::conditional_t<
- !dKV_swapAB,
- Layout<Shape<Int<AtomLayoutNdKV>, Int<NumMmaWarpGroups / AtomLayoutNdKV>, _1>>,
- Layout<Shape<Int<NumMmaWarpGroups / AtomLayoutNdKV>, Int<AtomLayoutNdKV>, _1>>
- >;
- using TiledMmadKV = decltype(cute::make_tiled_mma(
- std::conditional_t<
- Mma_dKV_is_RS,
- decltype(cute::GMMA::rs_op_selector<Element, Element, ElementAccum, TileShapeAtomdKV, GMMA::Major::K, GMMA::Major::MN>()),
- decltype(cute::GMMA::ss_op_selector<Element, Element, ElementAccum, TileShapeAtomdKV, !dKV_swapAB ? PdSt_Major : GMMA::Major::MN, !dKV_swapAB ? GMMA::Major::MN : PdSt_Major>())
- >{},
- AtomLayoutdKV{}));
- using TileShapeAtomdQ = std::conditional_t<
- !dQ_swapAB,
- Shape<Int<kBlockM>, Int<kHeadDim / (NumMmaWarpGroups / AtomLayoutMdQ)>, Int<kBlockN>>,
- Shape<Int<kHeadDim>, Int<kBlockM / AtomLayoutMdQ>, Int<kBlockN>>
- >;
- using AtomLayoutdQ = std::conditional_t<
- !dQ_swapAB,
- Layout<Shape<Int<AtomLayoutMdQ>, Int<NumMmaWarpGroups / AtomLayoutMdQ>, _1>>,
- Layout<Shape<Int<NumMmaWarpGroups / AtomLayoutMdQ>, Int<AtomLayoutMdQ>, _1>>
- >;
- using TiledMmadQ = decltype(cute::make_tiled_mma(
- std::conditional_t<
- Mma_dQ_is_RS,
- decltype(cute::GMMA::rs_op_selector<Element, Element, ElementAccum, TileShapeAtomdQ, GMMA::Major::K, GMMA::Major::MN>()),
- decltype(cute::GMMA::ss_op_selector<Element, Element, ElementAccum, TileShapeAtomdQ, !dQ_swapAB ? PdS_Major : GMMA::Major::MN, !dQ_swapAB ? GMMA::Major::MN : PdS_Major>())
- >{},
- AtomLayoutdQ{}));
- // We need to accommodate both Q and Q^T (and dO and dO^T) in shared memory.
- // Q & dO are used in the SdP Mma and Q^T and dO^T are used in the dKV Mma.
- // Since this is GMMA::Major::K, the M dimension (kBlockM) doesn't matter for the layout, only the K dimension
- // changes the layout.
- using SmemLayoutAtomQdO = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
- Int<kBlockM>, Int<kHeadDim / (NumMmaWarpGroups / AtomLayoutNdKV)>>()); // for dKV_Mma
- using SmemLayoutQ =
- decltype(tile_to_shape(SmemLayoutAtomQdO{},
- make_shape(shape<0>(TileShape_MNK{}), shape<2>(TileShape_MNK{}), Int<kStages>{})));
- using SmemLayoutdO =
- decltype(tile_to_shape(SmemLayoutAtomQdO{},
- make_shape(shape<0>(TileShape_MNK{}), shape<2>(TileShape_MNK{}), Int<kStages_dO>{})));
- using SmemLayoutAtomK = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
- Int<kBlockN>, Int<kHeadDim / (NumMmaWarpGroups / AtomLayoutMdQ)>>());
- using SmemLayoutK = decltype(tile_to_shape(SmemLayoutAtomK{}, select<1, 2>(TileShape_MNK{})));
- using SmemLayoutAtomV = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
- decltype(cute::get<1>(TileShape_MNK{})), decltype(cute::get<2>(TileShape_MNK{}))>());
- using SmemLayoutV = decltype(tile_to_shape(SmemLayoutAtomV{}, select<1, 2>(TileShape_MNK{})));
- using SmemLayoutAtomPdS = decltype(cutlass::gemm::collective::detail::ss_smem_selector<PdS_Major, Element,
- Int<kBlockM / AtomLayoutMSdP>,
- Int<kBlockN / (NumMmaWarpGroups / AtomLayoutMSdP)>>());
- using SmemLayoutPdS = decltype(tile_to_shape(
- SmemLayoutAtomPdS{},
- make_shape(Int<kBlockM>{}, Int<kBlockN>{}, Int<kStages_dS>{}),
- std::conditional_t<PdS_Major == GMMA::Major::K, cute::Step<_1, _2, _3>, cute::Step<_2, _1, _3>>{}));
- // Need stride to be multiple of 32, otherwise we get error (misaligned address) when doing TMA if e.g. kBlockM=80
- // We set stride to be multiple of 64 so that if ShuffleLSE, even if threads read from sLSE but out of bounds,
- // it's still a valid smem address.
- using SmemLayoutLSE = cute::Layout<cute::Shape<Int<kBlockM>, Int<kStages>>, cute::Stride<_1, Int<cute::round_up(kBlockM, 64)>>>;
- using SmemLayoutLSEMma = std::conditional_t<
- SdP_swapAB,
- cute::Layout<cute::Shape<Int<kBlockN>, Int<kBlockM>, Int<kStages>>, cute::Stride<_0, _1, Int<cute::round_up(kBlockM, 64)>>>,
- cute::Layout<cute::Shape<Int<kBlockM>, Int<kBlockN>, Int<kStages>>, cute::Stride<_1, _0, Int<cute::round_up(kBlockM, 64)>>>
- >;
- // Note this is the transpose in terms of the view, not in terms of memory.
- using SmemLayoutQt =
- decltype(cute::composition(SmemLayoutQ{},
- make_layout(make_shape(get<2>(TileShape_MNK{}), get<0>(TileShape_MNK{}), Int<kStages>{}),
- make_stride(Int<kBlockM>{}, _1{}, Int<kBlockM * kHeadDim>{}))));
- using SmemLayoutdOt =
- decltype(cute::composition(SmemLayoutdO{},
- make_layout(make_shape(get<2>(TileShape_MNK{}), get<0>(TileShape_MNK{}), Int<kStages_dO>{}),
- make_stride(Int<kBlockM>{}, _1{}, Int<kBlockM * kHeadDim>{}))));
- using SmemLayoutKt =
- decltype(cute::composition(SmemLayoutK{},
- make_layout(make_shape(get<2>(TileShape_MNK{}), get<1>(TileShape_MNK{})),
- make_stride(Int<kBlockN>{}, _1{}))));
- using SmemLayoutPdSt =
- decltype(cute::composition(SmemLayoutPdS{},
- make_layout(make_shape(Int<kBlockN>{}, Int<kBlockM>{}, Int<kStages_dS>{}),
- make_stride(Int<kBlockM>{}, _1{}, Int<kBlockM * kBlockN>{}))));
- // Thread layout, 256 or 384 threads per row
- // We split into NumMmaWarpGroups so that we can do Bulk reduce add for each WG separately.
- using R2SLayoutAtomdQaccum = Layout<Shape<Int<cutlass::NumThreadsPerWarpGroup>, Int<NumMmaWarpGroups>>>;
- using R2STiledCopydQaccum = decltype(make_tiled_copy(Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, ElementAccum>{}, R2SLayoutAtomdQaccum{},
- Layout<Shape < _4>>{})); // Val layout, 4 vals per store
- using SmemLayoutdQaccum = Layout<Shape<Int<kBlockM * kHeadDim / NumMmaWarpGroups>, Int<NumMmaWarpGroups>>>;
- static constexpr int kNumPdSStore = kBlockM * kBlockN / NumMmaThreads;
- // If !SdP_swapAB, the accum registers hold P / dS, otherwise they hold Pt / dSt.
- // If PdS_major is MN, then we need to "transpose" the write.
- using SmemCopyAtomPdS = Copy_Atom<
- std::conditional_t<(!SdP_swapAB) ^ (PdS_Major == GMMA::Major::MN),
- std::conditional_t<kNumPdSStore % 8 == 0, cute::SM90_U32x4_STSM_N, cute::SM90_U32x2_STSM_N>,
- std::conditional_t<kNumPdSStore % 8 == 0, cute::SM90_U16x8_STSM_T, cute::SM90_U16x4_STSM_T>
- >,
- Element
- >;
- using GmemTiledCopyQdO = decltype(cutlass::gemm::collective::detail::sm90_cluster_shape_to_tma_atom(shape<1>(ClusterShape{})));
- using GmemTiledCopyKV = cute::SM90_TMA_LOAD;
- using ShapeQKV = cute::Shape<int32_t, int32_t, int32_t, int32_t>; // (seqlen, d, head, batch)
- using StrideQKV = cute::Stride<int64_t, _1, int64_t, int64_t>;
- using ShapeLSE = cute::Shape<int32_t, int32_t, int32_t>; // (seqlen, head, batch)
- using StrideLSE = cute::Stride<_1, int64_t, int64_t>; // (seqlen, head, batch)
- using ShapedQaccum = cute::Shape<int32_t, int32_t, int32_t>; // (seqlen_q * d, head, batch)
- using StridedQaccum = cute::Stride<_1, int64_t, int64_t>;
- using TMA_QdO = decltype(make_tma_copy_A_sm90(
- GmemTiledCopyQdO{},
- make_tensor(make_gmem_ptr(static_cast<Element const*>(nullptr)), ShapeQKV{}, StrideQKV{}),
- take<0, 2>(SmemLayoutQ{}),
- TileShape_MNK{},
- ClusterShape{})); // mcast along N mode for this M load, if any
- using TMA_K = decltype(make_tma_copy_B_sm90(
- GmemTiledCopyKV{},
- make_tensor(make_gmem_ptr(static_cast<Element const*>(nullptr)), ShapeQKV{}, StrideQKV{}),
- SmemLayoutK{},
- TileShape_MNK{},
- ClusterShape{})); // no mcast for KV
- using TMA_V = decltype(make_tma_copy_B_sm90(
- GmemTiledCopyKV{},
- make_tensor(make_gmem_ptr(static_cast<Element const*>(nullptr)), ShapeQKV{}, StrideQKV{}),
- SmemLayoutV{},
- TileShape_MNK{},
- ClusterShape{})); // no mcast for KV
- using MainloopPipeline = typename cutlass::PipelineTmaAsync<kStages>;
- using PipelineState = typename MainloopPipeline::PipelineState;
- using MainloopPipeline_dO = typename cutlass::PipelineTmaAsync<kStages_dO>;
- using PipelineState_dO = typename MainloopPipeline_dO::PipelineState;
- // Set the bytes transferred in this TMA transaction (may involve multiple issues)
- static constexpr uint32_t TmaTransactionBytesQ = static_cast<uint32_t>(size(take<0, 2>(SmemLayoutQ{})) * cutlass::sizeof_bits_v<Element> / 8);
- static constexpr uint32_t TmaTransactionBytesK = static_cast<uint32_t>(size(SmemLayoutK{}) * cutlass::sizeof_bits_v<Element> / 8);
- static constexpr uint32_t TmaTransactionBytesV = static_cast<uint32_t>(size(SmemLayoutV{}) * cutlass::sizeof_bits_v<Element> / 8);
- static constexpr uint32_t TmaTransactionBytesLSE = static_cast<uint32_t>(size(select<0>(SmemLayoutLSE{})) * cutlass::sizeof_bits_v<ElementAccum> / 8);
- // These are tuned for speed. They don't affect correctness.
- // We have separate iterations with causal masking. Not necessary for hdim 128 but for hdim 64
- // this helps quite a bit to not have to do causal masking for most of the iterations.
- // For hdim 192, separating masking iterations results in register spills.
- static constexpr bool SeparateMaskingIterations = kHeadDim <= 64;
- // Do we keep the LSE and dPsum in each thread, or split them across 8 threads that share them and then
- // shuffle to get the value whenever we need? This can reduce register pressure when SdP_swapAB, where each
- // thread needs to keep statistics for (kBlockM / 4) rows. If !SdP_swapAB, each thread only needs to keep
- // statistic for 2 rows.
- static constexpr bool ShuffleLSE = SdP_swapAB && kHeadDim <= 64;
- static constexpr bool ShuffledPSum = SdP_swapAB && kHeadDim <= 64;
- // If we have extra registers, we can keep V in registers to reduce smem traffic.
- static constexpr bool Mma_dP_is_RS = SdP_swapAB && kHeadDim == 96;
- static constexpr bool dQacc_use_TMA = kHeadDim < 256;
- // For hdim256, we want to slice the dQ MMA (64 x 256 on 2 WGs) into two (64 x 128 on 2 WGs) so that we can
- // do atomic add on one half before doing the other half of the MMA, to reduce register pressure.
- static constexpr bool Slice_dQKV_Mma = kHeadDim == 256 && !dQacc_use_TMA && dQ_swapAB && AtomLayoutMdQ == 1 && NumMmaWarpGroups == 2;
- static_assert(!(Deterministic && Slice_dQKV_Mma), "Deterministic mode not supported with Slice_dQKV_Mma");
- static constexpr size_t SmemAlignmentP = cutlass::detail::alignment_for_swizzle(SmemLayoutPdS{});
- static constexpr size_t SmemAlignmentdS = cutlass::detail::alignment_for_swizzle(SmemLayoutPdS{});
- // Without this SmemAlignment, with hdim 256 we get "misaligned address" error in TMA
- static constexpr size_t SmemAlignmentQKVdO = kHeadDim % 256 == 0 ? 256 : 128;
- static constexpr size_t SmemAlignmentV = !Mma_dP_is_RS ? SmemAlignmentQKVdO : cutlass::detail::alignment_for_swizzle(SmemLayoutV{});
- static_assert(SmemAlignmentP >= 128 && SmemAlignmentdS >= 128, "Require at least 128B alignment");
- // TODO: do we have to worry that smem_dk and smem_dv in the epilogue don't line up w smem_k and smem_v due to alignment?
- using SmemdQacc_t = std::conditional_t<!dQacc_use_TMA, cute::array<ElementAccum, 0>, cute::array_aligned<ElementAccum, cute::cosize_v<SmemLayoutdQaccum>>>;
- using SmemP_t = std::conditional_t<Mma_dKV_is_RS, cute::array<Element, 0>, cute::array_aligned<Element, cute::cosize_v<SmemLayoutPdS>, SmemAlignmentP>>;
- struct TensorStorage : cute::aligned_struct<cute::max(SmemAlignmentP, SmemAlignmentdS, SmemAlignmentQKVdO)> {
- cute::array_aligned<Element, cute::cosize_v<SmemLayoutK>, SmemAlignmentQKVdO> smem_k;
- cute::array_aligned<Element, cute::cosize_v<SmemLayoutV>, SmemAlignmentV> smem_v;
- SmemdQacc_t smem_dqacc;
- cute::array_aligned<Element, cute::cosize_v<SmemLayoutQ>, SmemAlignmentQKVdO> smem_q;
- cute::array_aligned<Element, cute::cosize_v<SmemLayoutdO>, SmemAlignmentQKVdO> smem_do;
- cute::array_aligned<ElementAccum, cute::cosize_v<SmemLayoutLSE>, 128> smem_lse;
- cute::array_aligned<ElementAccum, cute::cosize_v<SmemLayoutLSE>, 128> smem_dpsum;
- SmemP_t smem_p;
- cute::array_aligned<Element, cute::cosize_v<SmemLayoutPdS>, SmemAlignmentdS> smem_ds;
- };
- // Host side kernel arguments
- struct Arguments {
- Element const* ptr_Q;
- ShapeQKV const shape_Q;
- StrideQKV const stride_Q;
- Element const* ptr_K;
- ShapeQKV const shape_K;
- StrideQKV const stride_K;
- Element const* ptr_V;
- StrideQKV const stride_V;
- Element const* ptr_dO;
- StrideQKV const stride_dO;
- ElementAccum* ptr_dQaccum;
- ShapedQaccum const shape_dQaccum;
- StridedQaccum const stride_dQaccum;
- float const* ptr_LSE_log2;
- ShapeLSE const shape_LSE;
- StrideLSE const stride_LSE_log2;
- float const* ptr_dPsum;
- StrideLSE const stride_dPsum;
- float const softmax_scale;
- int const window_size_left, window_size_right, sink_token_length;
- float const softcap_val;
- int const num_batch;
- int* const dq_semaphore;
- int const* const cu_seqlens_q = nullptr;
- int const* const cu_seqlens_k = nullptr;
- int const* const seqused_q = nullptr;
- int const* const seqused_k = nullptr;
- };
- // Device side kernel params
- struct Params {
- ShapeQKV const shape_Q;
- ShapeQKV const shape_K;
- ShapedQaccum const shape_dQaccum;
- ElementAccum* ptr_dQaccum;
- StridedQaccum stride_dQaccum;
- cutlass::FastDivmod qhead_per_khead_divmod;
- TMA_QdO tma_load_Q, tma_load_dO;
- TMA_K tma_load_K;
- TMA_V tma_load_V;
- float const* ptr_LSE_log2;
- ShapeLSE const shape_LSE;
- StrideLSE const stride_LSE_log2;
- float const* ptr_dPsum;
- StrideLSE const stride_dPsum;
- float const softmax_scale, softmax_scale_log2;
- int const window_size_left, window_size_right, sink_token_length;
- float const softcap_val;
- int const num_batch;
- int* const dq_semaphore;
- int const* const cu_seqlens_q = nullptr;
- int const* const cu_seqlens_k = nullptr;
- int const* const seqused_q = nullptr;
- int const* const seqused_k = nullptr;
- };
- static Params
- to_underlying_arguments(Arguments const& args) {
- Tensor mQ = make_tensor(make_gmem_ptr(args.ptr_Q), args.shape_Q, args.stride_Q);
- TMA_QdO tma_load_Q = make_tma_copy_A_sm90(
- GmemTiledCopyQdO{},
- mQ,
- SmemLayoutQ{}(_, _, _0{}),
- TileShape_MNK{},
- ClusterShape{}); // mcast along N mode for this M load, if any
- Tensor mdO = make_tensor(make_gmem_ptr(args.ptr_dO), args.shape_Q, args.stride_dO);
- TMA_QdO tma_load_dO = make_tma_copy_A_sm90(
- GmemTiledCopyQdO{},
- mdO,
- SmemLayoutdO{}(_, _, _0{}),
- TileShape_MNK{},
- ClusterShape{}); // mcast along N mode for this M load, if any
- Tensor mK = make_tensor(make_gmem_ptr(args.ptr_K), args.shape_K, args.stride_K);
- TMA_K tma_load_K = make_tma_copy_B_sm90(
- GmemTiledCopyKV{},
- mK,
- SmemLayoutK{},
- TileShape_MNK{},
- ClusterShape{}); // no mcast for KV
- Tensor mV = make_tensor(make_gmem_ptr(args.ptr_V), args.shape_K, args.stride_V);
- TMA_V tma_load_V = make_tma_copy_B_sm90(
- GmemTiledCopyKV{},
- mV,
- SmemLayoutV{},
- TileShape_MNK{},
- ClusterShape{}); // no mcast for KV
- if constexpr (Deterministic) { assert(args.dq_semaphore != nullptr); }
- // If there's tanh softcapping, we do tanh(scores * softmax_scale / softcap_val) * softcap_val.
- // Right after this, we multiply by log2(e) before applying exp2.
- // To reduce the number of instructions, we instead pre-multiply softmax_scale / softcap_val
- // (assigning it to params.softcap_val) and pre-multiply softcap_val * log2(e)
- // (assigning it to params.softmax_scale_log2).
- // In the backward, we need to multiply by
- // (1 - tanh^2) * softmax_scale / softcap_val * softcap_val = (1 - tanh^2) * softmax_scale.
- // Instead we multiply by (1 - tanh^2) and multiply dK and dV by params.softmax_scale
- // (the original softmax_scale) at the end.
- return {args.shape_Q, args.shape_K, args.shape_dQaccum,
- args.ptr_dQaccum, args.stride_dQaccum,
- cutlass::FastDivmod(cute::ceil_div(get<2>(args.shape_Q), get<2>(args.shape_K))),
- tma_load_Q, tma_load_dO, tma_load_K, tma_load_V,
- args.ptr_LSE_log2, args.shape_LSE, args.stride_LSE_log2, args.ptr_dPsum, args.stride_dPsum,
- args.softmax_scale,
- !Has_softcap ? float(args.softmax_scale * M_LOG2E) : float(args.softcap_val * M_LOG2E),
- args.window_size_left, args.window_size_right, args.sink_token_length,
- !Has_softcap ? 0.f : args.softmax_scale / args.softcap_val,
- args.num_batch, args.dq_semaphore,
- args.cu_seqlens_q, args.cu_seqlens_k, args.seqused_q, args.seqused_k};
- }
- /// Issue Tma Descriptor Prefetch -- ideally from a single thread for best performance
- CUTLASS_DEVICE
- static void prefetch_tma_descriptors(Params const& params) {
- cute::prefetch_tma_descriptor(params.tma_load_Q.get_tma_descriptor());
- cute::prefetch_tma_descriptor(params.tma_load_dO.get_tma_descriptor());
- cute::prefetch_tma_descriptor(params.tma_load_K.get_tma_descriptor());
- cute::prefetch_tma_descriptor(params.tma_load_V.get_tma_descriptor());
- }
- CUTLASS_DEVICE
- cute::tuple<int, int> get_m_block_min_max(Params const& params, SeqlenInfo_t const& seqlen_info,
- int n_block, int bidb) {
- static constexpr int kBlockM = get<0>(TileShape_MNK{});
- int const seqlen_q = seqlen_info.seqlen_q;
- int const seqlen_k = seqlen_info.seqlen_k;
- int m_block_max = cute::ceil_div(seqlen_q, kBlockM);
- if constexpr (Is_local) {
- static constexpr int kBlockN = get<1>(TileShape_MNK{});
- if (n_block >= cute::ceil_div(params.sink_token_length, kBlockN)) {
- m_block_max = std::min(m_block_max, cute::ceil_div((n_block + 1) * kBlockN + seqlen_q - seqlen_k + params.window_size_left, kBlockM));
- }
- }
- int m_block_min = 0;
- if constexpr (Is_causal || Is_local) {
- m_block_min = std::max(m_block_min, (n_block * kBlockN + seqlen_q - seqlen_k - params.window_size_right) / kBlockM);
- }
- return {m_block_min, m_block_max};
- }
- template <typename SchedulerPrefetch, typename SharedStorage>
- CUTLASS_DEVICE void
- load(Params const& params,
- MainloopPipeline pipeline_q,
- MainloopPipeline_dO pipeline_do,
- PipelineState& smem_pipe_write,
- PipelineState_dO& smem_pipe_write_do,
- SharedStorage &shared_storage,
- SchedulerPrefetch const& scheduler_prefetch,
- cute::tuple<int32_t, int32_t, int32_t> block_coord
- ) {
- auto [n_block, bidh, bidb] = block_coord;
- SeqlenInfo_t seqlen_info{
- bidb, get<0>(params.shape_Q), size<0>(params.shape_K),
- params.cu_seqlens_q, params.cu_seqlens_k, params.seqused_q, params.seqused_k
- };
- auto [m_block_min, m_block_max] = get_m_block_min_max(params, seqlen_info, n_block, bidb);
- // It's possible to have m_block_max <= m_block_min. Loading Q, K can cause illegal memory access.
- if constexpr (Is_causal || Is_local || Varlen) {
- if (m_block_max <= m_block_min) {
- scheduler_prefetch();
- return;
- }
- }
- Tensor sQ = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_q.data()), SmemLayoutQ{});
- Tensor sdO = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_do.data()), SmemLayoutdO{});
- Tensor sK = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_k.data()), SmemLayoutK{});
- Tensor sV = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutV{});
- Tensor sLSE = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_lse.data()), SmemLayoutLSE{});
- Tensor sdPsum = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_dpsum.data()), SmemLayoutLSE{});
- int bidh_kv = params.qhead_per_khead_divmod.divide(bidh);
- // Prepare the TMA loads
- uint32_t block_rank_in_cluster = cute::block_rank_in_cluster();
- constexpr uint32_t cluster_shape_x = get<0>(ClusterShape());
- uint2 cluster_local_block_id = {block_rank_in_cluster % cluster_shape_x, block_rank_in_cluster / cluster_shape_x};
- bool const is_varlen_q = Varlen && params.cu_seqlens_q;
- bool const is_varlen_k = Varlen && params.cu_seqlens_k;
- Tensor mQ = params.tma_load_Q.get_tma_tensor(params.shape_Q)(_, _, bidh, !is_varlen_q ? bidb : 0);
- Tensor mdO = params.tma_load_dO.get_tma_tensor(params.shape_Q)(_, _, bidh, !is_varlen_q ? bidb : 0);
- Tensor mK = params.tma_load_K.get_tma_tensor(params.shape_K)(_, _, bidh_kv, !is_varlen_k ? bidb : 0);
- Tensor mV = params.tma_load_V.get_tma_tensor(params.shape_K)(_, _, bidh_kv, !is_varlen_k ? bidb : 0);
- Tensor mLSE = make_tensor(make_gmem_ptr(params.ptr_LSE_log2), params.shape_LSE, params.stride_LSE_log2)(_, bidh, !is_varlen_q ? bidb : 0);
- Tensor mdPsum = make_tensor(make_gmem_ptr(params.ptr_dPsum), params.shape_LSE, params.stride_dPsum)(_, bidh, !is_varlen_q ? bidb : 0);
- Tensor gQ = local_tile(domain_offset(make_coord(seqlen_info.offset_q, _0{}), mQ), select<0, 2>(TileShape_MNK{}), make_coord(_, _0{})); // (M, K, _)
- Tensor gdO = local_tile(domain_offset(make_coord(seqlen_info.offset_q, _0{}), mdO), select<0, 2>(TileShape_MNK{}), make_coord(_, _0{})); // (M, K, _)
- Tensor gK = local_tile(domain_offset(make_coord(seqlen_info.offset_k, _0{}), mK), select<1, 2>(TileShape_MNK{}), make_coord(n_block, _0{})); // (N, K)
- Tensor gV = local_tile(domain_offset(make_coord(seqlen_info.offset_k, _0{}), mV), select<1, 2>(TileShape_MNK{}), make_coord(n_block, _0{})); // (N, K)
- Tensor gLSE = local_tile(domain_offset(make_coord(seqlen_info.offset_q_padded), mLSE), select<0>(TileShape_MNK{}), make_coord(_)); // (M, _)
- Tensor gdPsum = local_tile(domain_offset(make_coord(seqlen_info.offset_q_padded), mdPsum), select<0>(TileShape_MNK{}), make_coord(_)); // (M, _)
- Tensor sK_x = make_tensor(sK.data(), make_layout(sK.layout(), Layout<_1>{}));
- Tensor gK_x = make_tensor(gK.data(), make_layout(gK.layout(), Layout<_1>{}));
- Tensor sV_x = make_tensor(sV.data(), make_layout(sV.layout(), Layout<_1>{}));
- Tensor gV_x = make_tensor(gV.data(), make_layout(gV.layout(), Layout<_1>{}));
- // auto [tQgQ, tQsQ] = tma_partition(params.tma_load_Q, block_rank_in_cluster, Layout<ClusterShape>{},
- // group_modes<0, 2>(sQ), group_modes<0, 2>(gQ)); // (TMA, k), (TMA, PIPE)
- // auto [tdOgdO, tdOsdO] = tma_partition(params.tma_load_dO, block_rank_in_cluster, Layout<ClusterShape>{},
- // group_modes<0, 2>(sdO), group_modes<0, 2>(gdO)); // (TMA, k), (TMA, PIPE)
- auto block_tma_Q = params.tma_load_Q.get_slice(cluster_local_block_id.y);
- auto block_tma_dO = params.tma_load_dO.get_slice(cluster_local_block_id.y);
- Tensor tQgQ = group_modes<0, 3>(block_tma_Q.partition_S(gQ));
- Tensor tQsQ = group_modes<0, 3>(block_tma_Q.partition_D(sQ));
- Tensor tdOgdO = group_modes<0, 3>(block_tma_dO.partition_S(gdO));
- Tensor tdOsdO = group_modes<0, 3>(block_tma_dO.partition_D(sdO));
- auto [tKgK, tKsK] = tma_partition(params.tma_load_K, _0{}, Layout<_1>{},
- group_modes<0, 2>(sK_x), group_modes<0, 2>(gK_x)); // (TMA), (TMA)
- auto [tVgV, tVsV] = tma_partition(params.tma_load_V, _0{}, Layout<_1>{},
- group_modes<0, 2>(sV_x), group_modes<0, 2>(gV_x)); // (TMA), (TMA)
- auto bulk_copy = Copy_Traits<SM90_BULK_COPY_AUTO>{};
- uint16_t mcast_mask_qdo = 0;
- if constexpr (cute::is_same_v<GmemTiledCopyQdO, SM90_TMA_LOAD_MULTICAST>) {
- auto block_layout = Layout<ClusterShape>{}; // (m,n) -> block_id
- for (int n = 0; n < size<1>(block_layout); ++n) {
- mcast_mask_qdo |= (uint16_t(1) << block_layout(cluster_local_block_id.x, n, _0{}));
- }
- }
- int m_block = m_block_min;
- int lane_predicate = cute::elect_one_sync();
- if (lane_predicate) {
- pipeline_q.producer_acquire(smem_pipe_write);
- copy(params.tma_load_Q.with(*pipeline_q.producer_get_barrier(smem_pipe_write), mcast_mask_qdo, TMA::CacheHintSm90::EVICT_LAST),
- tQgQ(_, m_block), tQsQ(_, smem_pipe_write.index()));
- copy(bulk_copy.with(*pipeline_q.producer_get_barrier(smem_pipe_write)),
- gLSE(_, m_block), sLSE(_, smem_pipe_write.index()));
- }
- // // Wait for the MMA warpgroups to say that smem_k and smem_v are ready
- // cutlass::arch::NamedBarrier::sync(NumMmaThreads + cutlass::NumThreadsPerWarp, static_cast<int>(BwdNamedBarriers::KVEmpty) /*id*/);
- if (lane_predicate) {
- // Copy K tile and V tile from GMEM to SMEM.
- shared_storage.pipelines.barrier_KV.arrive_and_expect_tx(TmaTransactionBytesK + TmaTransactionBytesV);
- copy(params.tma_load_K.with(reinterpret_cast<cutlass::arch::ClusterTransactionBarrier::ValueType&>(shared_storage.pipelines.barrier_KV), 0 /*mcast_mask*/), tKgK, tKsK);
- copy(params.tma_load_V.with(reinterpret_cast<cutlass::arch::ClusterTransactionBarrier::ValueType&>(shared_storage.pipelines.barrier_KV), 0 /*mcast_mask*/), tVgV, tVsV);
- #pragma unroll (kHeadDim < 256 ? 2 : 1)
- for (; m_block < m_block_max - 1; ++m_block) {
- // If Q and dO have the same number of stages, we can use the same pipeline state variable
- // to reduce registers
- PipelineState_dO smem_pipe_write_do_cur = cute::conditional_return<Q_dO_same_stages>(smem_pipe_write, smem_pipe_write_do);
- pipeline_do.producer_acquire(smem_pipe_write_do_cur);
- copy(params.tma_load_dO.with(*pipeline_do.producer_get_barrier(smem_pipe_write_do_cur), mcast_mask_qdo, TMA::CacheHintSm90::EVICT_LAST),
- tdOgdO(_, m_block), tdOsdO(_, smem_pipe_write_do_cur.index()));
- copy(bulk_copy.with(*pipeline_do.producer_get_barrier(smem_pipe_write_do_cur)),
- gdPsum(_, m_block), sdPsum(_, smem_pipe_write_do_cur.index()));
- if constexpr (!Q_dO_same_stages) { ++smem_pipe_write_do; }
- ++smem_pipe_write;
- pipeline_q.producer_acquire(smem_pipe_write);
- copy(params.tma_load_Q.with(*pipeline_q.producer_get_barrier(smem_pipe_write), mcast_mask_qdo, TMA::CacheHintSm90::EVICT_LAST),
- tQgQ(_, m_block + 1), tQsQ(_, smem_pipe_write.index()));
- copy(bulk_copy.with(*pipeline_q.producer_get_barrier(smem_pipe_write)),
- gLSE(_, m_block + 1), sLSE(_, smem_pipe_write.index()));
- }
- }
- scheduler_prefetch();
- if (lane_predicate) {
- PipelineState_dO smem_pipe_write_do_cur = cute::conditional_return<Q_dO_same_stages>(smem_pipe_write, smem_pipe_write_do);
- pipeline_do.producer_acquire(smem_pipe_write_do_cur);
- copy(params.tma_load_dO.with(*pipeline_do.producer_get_barrier(smem_pipe_write_do_cur), mcast_mask_qdo, TMA::CacheHintSm90::EVICT_LAST),
- tdOgdO(_, m_block), tdOsdO(_, smem_pipe_write_do_cur.index()));
- copy(bulk_copy.with(*pipeline_do.producer_get_barrier(smem_pipe_write_do_cur)),
- gdPsum(_, m_block), sdPsum(_, smem_pipe_write_do_cur.index()));
- if constexpr (!Q_dO_same_stages) { ++smem_pipe_write_do; }
- ++smem_pipe_write;
- }
- if constexpr (Q_dO_same_stages) { smem_pipe_write_do = smem_pipe_write; }
- }
- /// Perform a Producer Epilogue to prevent early exit of blocks in a Cluster
- CUTLASS_DEVICE void
- load_tail(MainloopPipeline pipeline_q, MainloopPipeline_dO pipeline_do,
- PipelineState& smem_pipe_write) {
- static_assert(Q_dO_same_stages, "Q and dO must have the same number of stages");
- // Need to copy since pipeline_q.producer_tail(smem_pipe_write) will increment smem_pipe_write
- PipelineState smem_pipe_write_do = smem_pipe_write;
- // Issue the epilogue waits
- if (cute::elect_one_sync()) {
- /* This helps avoid early exit of blocks in Cluster
- * Waits for all stages to either be released (all Consumer UNLOCKs), or if the stage was never used
- * then would just be acquired since the phase was still inverted from make_producer_start_state
- */
- pipeline_q.producer_tail(smem_pipe_write);
- pipeline_do.producer_tail(smem_pipe_write_do);
- }
- }
- /// Perform a Producer Epilogue to prevent early exit of blocks in a Cluster
- CUTLASS_DEVICE void
- load_tail(MainloopPipeline pipeline_q, MainloopPipeline_dO pipeline_do,
- PipelineState& smem_pipe_write, PipelineState_dO& smem_pipe_write_do) {
- // Issue the epilogue waits
- if (cute::elect_one_sync()) {
- /* This helps avoid early exit of blocks in Cluster
- * Waits for all stages to either be released (all Consumer UNLOCKs), or if the stage was never used
- * then would just be acquired since the phase was still inverted from make_producer_start_state
- */
- pipeline_q.producer_tail(smem_pipe_write);
- pipeline_do.producer_tail(smem_pipe_write_do);
- }
- }
- template <typename SharedStorage>
- CUTLASS_DEVICE void
- store_dq(Params const& params,
- SharedStorage &shared_storage,
- cute::tuple<int32_t, int32_t, int32_t> block_coord
- ) {
- if constexpr (!dQacc_use_TMA) { return; }
- auto [n_block, bidh, bidb] = block_coord;
- SeqlenInfo_t seqlen_info{
- bidb, get<0>(params.shape_Q), size<0>(params.shape_K),
- params.cu_seqlens_q, params.cu_seqlens_k, params.seqused_q, params.seqused_k
- };
- auto [m_block_min, m_block_max] = get_m_block_min_max(params, seqlen_info, n_block, bidb);
- // It's possible to have m_block_max <= m_block_min. Exit early
- if constexpr (Is_causal || Is_local || Varlen) {
- if (m_block_max <= m_block_min) { return; }
- }
- Tensor sdQ = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_dqacc.data()), SmemLayoutdQaccum{});
- static constexpr int dQ_TMA_num_bytes = CUTE_STATIC_V(size<0>(sdQ)) * sizeof(ElementAccum);
- bool const is_varlen = Varlen && params.cu_seqlens_q;
- Tensor mdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum*>(params.ptr_dQaccum)),
- params.shape_dQaccum, params.stride_dQaccum)(_, bidh, !is_varlen ? bidb : 0);
- Tensor gdQaccum_ = local_tile(domain_offset(make_coord(seqlen_info.offset_q_padded * kHeadDim), mdQaccum), Shape<Int<kBlockM * kHeadDim>>{}, make_coord(_)); // (M * K, _)
- Tensor gdQaccum = cute::flat_divide(gdQaccum_, Int<kBlockM * kHeadDim / NumMmaWarpGroups>{}); // (M * K / WG, WG, _)
- int const num_batch = params.num_batch;
- int const num_head = get<2>(params.shape_Q);
- int *lock_ptr = !Deterministic ? nullptr : params.dq_semaphore + bidb * num_head + bidh;
- using Barrier = cutlass::GenericBarrier<cutlass::detail::SyncwarpSync>;
- bool const lane_predicate = cute::elect_one_sync();
- int m_block = m_block_min;
- #pragma unroll 2
- for (; m_block < m_block_max; ++m_block) {
- if constexpr (Deterministic) {
- Barrier::wait_eq(lock_ptr, threadIdx.x % cutlass::NumThreadsPerWarp, m_block * num_batch * num_head, n_block);
- }
- #pragma unroll
- for (int warpgroup_idx = 0; warpgroup_idx < NumMmaWarpGroups; ++warpgroup_idx) {
- cutlass::arch::NamedBarrier::sync(cutlass::NumThreadsPerWarpGroup + cutlass::NumThreadsPerWarp, static_cast<int>(BwdNamedBarriers::dQFullWG1) + warpgroup_idx /*id*/); // sdQ full, to be written to gmem
- if (lane_predicate) {
- SM90_BULK_REDUCE_ADD::copy(raw_pointer_cast(sdQ(_, warpgroup_idx).data()), raw_pointer_cast(gdQaccum(_, warpgroup_idx, m_block).data()), dQ_TMA_num_bytes, static_cast<uint64_t>(TMA::CacheHintSm90::EVICT_LAST));
- tma_store_arrive();
- }
- }
- // Note, the for_each() function is required here to ensure `warpgroup_idx` is of type Int<x>.
- for_each(make_int_sequence<NumMmaWarpGroups>{}, [&] (auto warpgroup_idx) {
- if (lane_predicate) { tma_store_wait<NumMmaWarpGroups - 1 - CUTE_STATIC_V(warpgroup_idx)>(); }
- cutlass::arch::NamedBarrier::arrive(cutlass::NumThreadsPerWarpGroup + cutlass::NumThreadsPerWarp, static_cast<int>(BwdNamedBarriers::dQEmptyWG1) + warpgroup_idx /*id*/); // sdQ empty, ready to be written to
- });
- if constexpr (Deterministic) {
- Barrier::arrive_inc(lock_ptr, threadIdx.x % cutlass::NumThreadsPerWarp, m_block * num_batch * num_head);
- }
- }
- if constexpr (Is_local && Deterministic) {
- constexpr int kBlockM = get<0>(TileShape_MNK{});
- int const m_block_global_max = cute::ceil_div(seqlen_info.seqlen_q, kBlockM);
- #pragma unroll 2
- for (; m_block < m_block_global_max; ++m_block) {
- Barrier::arrive_inc(lock_ptr, threadIdx.x % cutlass::NumThreadsPerWarp, m_block * num_batch * num_head);
- }
- }
- }
- CUTLASS_DEVICE void
- mma_init() {
- // Tell producer (warp 0) that smem_k and smem_v are ready
- // We're not currently using this bc we're not using persistent scheduler
- // cutlass::arch::NamedBarrier::arrive(NumMmaThreads + cutlass::NumThreadsPerWarp, static_cast<int>(BwdNamedBarriers::KVEmpty) /*id*/);
- int warp_idx_in_warpgroup = __shfl_sync(0xffffffff, (threadIdx.x / 32) % 4, 0);
- if constexpr (dQacc_use_TMA) {
- if (warp_idx_in_warpgroup == 0) {
- cutlass::arch::NamedBarrier::arrive(cutlass::NumThreadsPerWarpGroup + cutlass::NumThreadsPerWarp, static_cast<int>(BwdNamedBarriers::dQEmptyWG1) - 1 + flash::canonical_warp_group_idx_nosync() /*id*/); // sdQ empty, ready to be written to
- }
- }
- }
- template <typename SharedStorage, typename FrgTensordKV>
- CUTLASS_DEVICE bool
- mma(Params const& params,
- MainloopPipeline pipeline_q,
- MainloopPipeline_dO pipeline_do,
- PipelineState& smem_pipe_read,
- PipelineState_dO& smem_pipe_read_do,
- FrgTensordKV& tdKrdK,
- FrgTensordKV& tdVrdV,
- int thread_idx,
- int &work_idx,
- cute::tuple<int32_t, int32_t, int32_t> block_coord,
- SharedStorage& shared_storage
- ) {
- static_assert(is_rmem<FrgTensordKV>::value, "dK and dV tensor must be rmem resident.");
- int n_block = get<0>(block_coord);
- int bidb = get<2>(block_coord);
- SeqlenInfo_t seqlen_info{
- bidb, get<0>(params.shape_Q), size<0>(params.shape_K),
- params.cu_seqlens_q, params.cu_seqlens_k, params.seqused_q, params.seqused_k
- };
- auto [m_block_min, m_block_max] = get_m_block_min_max(params, seqlen_info, n_block, bidb);
- // It's possible to have m_block_max <= m_block_min. Exit early
- if constexpr (Is_causal || Is_local || Varlen) {
- if (m_block_max <= m_block_min) { return false; }
- }
- Tensor sQ = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_q.data()), SmemLayoutQ{});
- Tensor sdO = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_do.data()), SmemLayoutdO{});
- Tensor sK = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_k.data()), SmemLayoutK{});
- Tensor sV = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_v.data()), SmemLayoutV{});
- Tensor sQt = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_q.data()), SmemLayoutQt{});
- Tensor sdOt = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_do.data()), SmemLayoutdOt{});
- Tensor sKt = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_k.data()), SmemLayoutKt{});
- Tensor sP = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_p.data()), SmemLayoutPdS{});
- Tensor sP_pi = cute::as_position_independent_swizzle_tensor(sP);
- Tensor sPt = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_p.data()), SmemLayoutPdSt{});
- Tensor sPt_pi = cute::as_position_independent_swizzle_tensor(sPt);
- Tensor sdS = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_ds.data()), SmemLayoutPdS{});
- Tensor sdS_pi = cute::as_position_independent_swizzle_tensor(sdS);
- Tensor sdSt = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_ds.data()), SmemLayoutPdSt{});
- Tensor sdSt_pi = cute::as_position_independent_swizzle_tensor(sdSt);
- Tensor sdQ = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_dqacc.data()), SmemLayoutdQaccum{});
- Tensor sLSEMma = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_lse.data()), SmemLayoutLSEMma{});
- Tensor sdPsumMma = make_tensor(make_smem_ptr(shared_storage.tensors.mainloop.smem_dpsum.data()), SmemLayoutLSEMma{});
- static_assert(stride<0>(typename TiledMmaSdP::ALayout{}) == 0 and
- stride<0>(typename TiledMmaSdP::BLayout{}) == 0 and
- size<0>(typename TiledMmaSdP::ALayout{}) == cutlass::NumThreadsPerWarpGroup and
- size<0>(typename TiledMmaSdP::BLayout{}) == cutlass::NumThreadsPerWarpGroup,
- "Stride of the first mode must be 0 and the size of the mode must be NumThreadsPerWarpGroup");
- constexpr int MmaWarpGroups = NumMmaThreads / cutlass::NumThreadsPerWarpGroup;
- Layout warp_group_thread_layout = make_layout(make_shape(Int<MmaWarpGroups>{}),
- make_stride(Int<cutlass::NumThreadsPerWarpGroup>{}));
- Layout warp_group_thread_layout_dq = make_layout(make_shape(Int<NumMmaWarpGroups>{}),
- make_stride(Int<cutlass::NumThreadsPerWarpGroup>{}));
- int warp_group_idx = __shfl_sync(0xFFFFFFFF, thread_idx / cutlass::NumThreadsPerWarpGroup, 0);
- TiledMmaSdP tiled_mma_SdP;
- using TiledMmadP = std::conditional_t<!Mma_dP_is_RS, TiledMmaSdP, TiledMmadPRS>;
- TiledMmadP tiled_mma_dP;
- TiledMmadKV tiled_mma_dKV;
- TiledMmadQ tiled_mma_dQ;
- auto wg_mma_SdP = tiled_mma_SdP.get_slice(warp_group_thread_layout(warp_group_idx));
- auto wg_mma_dP = tiled_mma_dP.get_slice(warp_group_thread_layout(warp_group_idx));
- auto thread_mma_SdP = tiled_mma_SdP.get_thread_slice(thread_idx);
- auto wg_mma_dKV = tiled_mma_dKV.get_slice(warp_group_thread_layout(warp_group_idx));
- auto wg_mma_dQ = tiled_mma_dQ.get_slice(warp_group_thread_layout_dq(warp_group_idx));
- auto thread0_mma_SdP = tiled_mma_SdP.get_thread_slice(_0{});
- auto smem_tiled_copy_PdS = make_tiled_copy_C(SmemCopyAtomPdS{}, tiled_mma_SdP);
- auto smem_thr_copy_PdS = smem_tiled_copy_PdS.get_thread_slice(thread_idx);
- R2STiledCopydQaccum r2s_tiled_copy_dQaccum;
- auto r2s_thr_copy_dQaccum = r2s_tiled_copy_dQaccum.get_thread_slice(thread_idx);
- Tensor tdQsdQaccum = r2s_thr_copy_dQaccum.partition_D(sdQ);
- // if (thread_idx == 0) { print(sdQ); printf("\n"); print(tdQsdQaccum); printf("\n"); }
- // Allocate "fragments/descriptors"
- // We have to use the templated mma_partition_fragment_AB instead of cute::conditional_return or lambda,
- // because some partition_fragment_A/B don't compile.
- // https://stackoverflow.com/questions/50051473/if-constexpr-in-c17-does-not-work-in-a-non-templated-function
- Tensor tSrQ = mma_partition_fragment_AB</*A=*/!SdP_swapAB>(wg_mma_SdP, sQ);
- Tensor tSrK = mma_partition_fragment_AB</*A=*/SdP_swapAB>(wg_mma_SdP, sK);
- Tensor tdPrdO = mma_partition_fragment_AB</*A=*/!SdP_swapAB>(wg_mma_SdP, sdO);
- Tensor tdPrV = mma_partition_fragment_AB</*A=*/SdP_swapAB>(wg_mma_dP, sV);
- Tensor tdVrdO = mma_partition_fragment_AB</*A=*/dKV_swapAB>(wg_mma_dKV, sdOt);
- Tensor tdKrQ = mma_partition_fragment_AB</*A=*/dKV_swapAB>(wg_mma_dKV, sQt);
- Tensor tdQrdS = mma_partition_fragment_AB</*A=*/!dQ_swapAB>(wg_mma_dQ, sdS);
- Tensor tdQrK = mma_partition_fragment_AB</*A=*/dQ_swapAB>(wg_mma_dQ, sKt);
- Tensor tPsP = smem_thr_copy_PdS.partition_D(cute::conditional_return<!SdP_swapAB>(sP_pi, sPt_pi)); // ((Atom,AtomNum),PIPE_M,PIPE_N)
- Tensor tdSsdS = smem_thr_copy_PdS.partition_D(cute::conditional_return<!SdP_swapAB>(sdS_pi, sdSt_pi)); // ((Atom,AtomNum),PIPE_M,PIPE_N)
- // if (blockIdx.x == 0 && threadIdx.x == 128) { print(smem_thr_copy_PdS); print(sP_pi); printf("\n"); print(sPt_pi); printf("\n"); print(tPsP); printf("\n"); print(tdSsdS); printf("\n"); }
- // thread_mma_SdP.partition_C(sLSEMma) has shape ((2, 2, V), MMA_M, MMA_N, PIPE), we only take the col indices
- // or row indices, depending on whether SdP_swapAB.
- Tensor tLSEsLSE = cute::conditional_return<!SdP_swapAB>(
- group_modes<0, 2>(thread_mma_SdP.partition_C(sLSEMma)(make_coord(_0{}, _, _0{}), _, _0{}, _)), // (2, MMA_M, PIPE)
- group_modes<0, 3>(thread_mma_SdP.partition_C(sLSEMma)(make_coord(_, _0{}, _), _0{}, _, _))); // (2, V, MMA_N, PIPE)
- Tensor tLSEsdPsum = cute::conditional_return<!SdP_swapAB>(
- group_modes<0, 2>(thread_mma_SdP.partition_C(sdPsumMma)(make_coord(_0{}, _, _0{}), _, _0{}, _)),
- group_modes<0, 3>(thread_mma_SdP.partition_C(sdPsumMma)(make_coord(_, _0{}, _), _0{}, _, _)));
- // if (blockIdx.x == 0 && threadIdx.x == 128) { print(sLSEMma); printf("\n"); print(tLSEsLSE); printf("\n"); }
- // If we want to split the stats among the 8 threads that share the same rows.
- static constexpr int kStatsPerThread = cute::ceil_div(decltype(size(tLSEsLSE))::value, 8);
- auto consumer_wait = [](auto& pipeline, auto& smem_pipe_read) {
- auto barrier_token = pipeline.consumer_try_wait(smem_pipe_read);
- pipeline.consumer_wait(smem_pipe_read, barrier_token);
- };
- int bidh = get<1>(block_coord);
- int const seqlen_q = seqlen_info.seqlen_q;
- int const seqlen_k = seqlen_info.seqlen_k;
- // For the case where we do atomicAdd directly to gdQaccum instead of using TMA
- bool const is_varlen = Varlen && params.cu_seqlens_q;
- Tensor mdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum*>(params.ptr_dQaccum)),
- params.shape_dQaccum, params.stride_dQaccum)(_, bidh, !is_varlen ? bidb : 0);
- Tensor gdQaccum_ = local_tile(domain_offset(make_coord(seqlen_info.offset_q_padded * kHeadDim), mdQaccum), Shape<Int<kBlockM * kHeadDim>>{}, make_coord(_)); // (M * K, _)
- Tensor gdQaccum = cute::flat_divide(gdQaccum_, Int<kBlockM * kHeadDim / NumMmaWarpGroups>{}); // (M * K / WG, WG, _)
- // We can reuse r2s_thr_copy_dQaccum for this partitioning
- Tensor tdQgdQaccum = r2s_thr_copy_dQaccum.partition_D(gdQaccum);
- // if (blockIdx.x == 0 && threadIdx.x == 128) { print(mdQaccum); printf("\n"); print(gdQaccum_); printf("\n"); print(gdQaccum); printf("\n"); print(tdQgdQaccum); printf("\n"); }
- flash::Mask<kBlockM, kBlockN, false /*PackGQA*/, TiledMmaSdP, SdP_swapAB> mask(
- thread_idx, seqlen_q, seqlen_k, params.window_size_left, params.window_size_right, params.sink_token_length,
- params.qhead_per_khead_divmod
- );
- int m_block = m_block_min;
- clear(tdKrdK);
- clear(tdVrdV);
- // tiled_mma_dKV.accumulate_ = GMMA::ScaleOut::Zero;
- cutlass::ConsumerToken barrier_token = static_cast<cutlass::BarrierStatus>(shared_storage.pipelines.barrier_KV.try_wait(work_idx % 2));
- if (barrier_token == cutlass::BarrierStatus::WaitAgain) { shared_storage.pipelines.barrier_KV.wait(work_idx % 2); }
- if constexpr (Mma_dP_is_RS) {
- using SmemCopyAtomV = Copy_Atom<cute::SM75_U32x4_LDSM_N, Element>;
- auto smem_tiled_copy_V = make_tiled_copy_A(SmemCopyAtomV{}, tiled_mma_dP);
- auto smem_thr_copy_V = smem_tiled_copy_V.get_thread_slice(thread_idx);
- Tensor tdPrV_copy_view = smem_thr_copy_V.retile_D(tdPrV);
- Tensor tdPsV_copy_view = smem_thr_copy_V.partition_S(cute::as_position_independent_swizzle_tensor(sV));
- cute::copy(smem_tiled_copy_V, tdPsV_copy_view, tdPrV_copy_view);
- }
- auto bwd_step = [&](int m_block, auto mask_fn) {
- Tensor tSrS = partition_fragment_C(tiled_mma_SdP, select<!SdP_swapAB ? 0 : 1, !SdP_swapAB ? 1 : 0>(TileShape_MNK{}));
- consumer_wait(pipeline_q, smem_pipe_read);
- flash::gemm</*zero_init=*/true, /*wg_wait=*/-1, /*SwapAB=*/SdP_swapAB>(tiled_mma_SdP, tSrQ(_, _, _, smem_pipe_read.index()), tSrK, tSrS);
- Tensor tLSErLSE = cute::conditional_return<!ShuffleLSE>(make_fragment_like(tLSEsLSE(_, _0{})), make_tensor<ElementAccum>(Int<kStatsPerThread>{}));
- if constexpr (!ShuffleLSE) {
- cute::copy(tLSEsLSE(_, smem_pipe_read.index()), tLSErLSE);
- } else {
- #pragma unroll
- for (int i = 0; i < kStatsPerThread; ++i) {
- // It's ok to read OOB, since we made sure sLSE is large enough and we won't use the OOB values
- tLSErLSE(i) = tLSEsLSE((thread_idx % 32) / 4 + i * 8, smem_pipe_read.index());
- }
- }
- Tensor tdPrdP = partition_fragment_C(tiled_mma_SdP, select<!SdP_swapAB ? 0 : 1, !SdP_swapAB ? 1 : 0>(TileShape_MNK{}));
- PipelineState_dO smem_pipe_read_do_cur = cute::conditional_return<Q_dO_same_stages>(smem_pipe_read, smem_pipe_read_do);
- consumer_wait(pipeline_do, smem_pipe_read_do_cur);
- flash::gemm</*zero_init=*/true, /*wg_wait=*/-1, /*SwapAB=*/SdP_swapAB>(tiled_mma_dP, tdPrdO(_, _, _, smem_pipe_read_do_cur.index()), tdPrV, tdPrdP);
- warpgroup_wait<1>();
- if constexpr (Has_softcap) { flash::apply_softcap(tSrS, params.softcap_val); }
- // Reshape tSrS from ((2, 2, V), MMA_N, MMA_M) to (nrow=(2, V, MMA_M), ncol=(2, MMA_N))
- Tensor scores = make_tensor(tSrS.data(), flash::convert_layout_acc_rowcol</*Transposed=*/SdP_swapAB>(tSrS.layout()));
- // dtanh needs to happen before masking, otherwise we get 1 - (-inf)^2 = NaN in the dtanh
- auto dtanh = [&] { if constexpr (Has_softcap) return flash::calculate_dtanh(scores); else return nullptr; }();
- mask_fn(tSrS, m_block);
- #pragma unroll
- for (int mi = 0; mi < size<0>(scores); ++mi) {
- float const lse_scaled = [&] {
- if constexpr (!ShuffleLSE) return tLSErLSE(mi);
- else return __shfl_sync(0xffffffff, tLSErLSE(mi / 8), (mi % 8) * 4 + (thread_idx % 4));
- }();
- #pragma unroll
- for (int ni = 0; ni < size<1>(scores); ++ni) {
- scores(mi, ni) = exp2f(scores(mi, ni) * params.softmax_scale_log2 - lse_scaled);
- }
- }
- Tensor tLSErdPsum = cute::conditional_return<!ShuffledPSum>(make_fragment_like(tLSEsdPsum(_, _0{})), make_tensor<ElementAccum>(Int<kStatsPerThread>{}));
- if constexpr (!ShuffledPSum) {
- cute::copy(tLSEsdPsum(_, smem_pipe_read_do_cur.index()), tLSErdPsum);
- } else {
- #pragma unroll
- for (int i = 0; i < kStatsPerThread; ++i) {
- tLSErdPsum(i) = tLSEsdPsum((thread_idx % 32) / 4 + i * 8, smem_pipe_read_do_cur.index());
- }
- }
- warpgroup_wait<0>();
- // Reshape tdPrdP from ((2, 2, V), MMA_N, MMA_M) to (nrow=(2, V, MMA_M), ncol=(2, MMA_N))
- Tensor dS = make_tensor(tdPrdP.data(), scores.layout());
- #pragma unroll
- for (int mi = 0; mi < size<0>(dS); ++mi) {
- float const dP_sum_cur = [&] {
- if constexpr (!ShuffledPSum) return tLSErdPsum(mi);
- else return __shfl_sync(0xffffffff, tLSErdPsum(mi / 8), (mi % 8) * 4 + (thread_idx % 4));
- }();
- #pragma unroll
- for (int ni = 0; ni < size<1>(dS); ++ni) {
- dS(mi, ni) = scores(mi, ni) * (dS(mi, ni) - dP_sum_cur);
- if constexpr (Has_softcap) { dS(mi, ni) *= dtanh(mi, ni); }
- }
- }
- // Convert scores from fp32 to fp16/bf16
- Tensor rP = make_tensor_like<Element>(tSrS);
- flash::convert_type_out(tSrS, rP);
- if constexpr (!Mma_dKV_is_RS) {
- // Need to sync to make sure P has already been used in the previous iteration before writing new values
- if constexpr (kStages_dS == 1) {
- cutlass::arch::NamedBarrier::sync(NumMmaThreads, static_cast<int>(BwdNamedBarriers::PdS) /*id*/);
- }
- Tensor tPaP = smem_thr_copy_PdS.retile_S(rP); // ((Atom,AtomNum), MMA_N, MMA_N)
- cute::copy(smem_tiled_copy_PdS, tPaP, tPsP(_, _, _, cute::conditional_return<kStages_dS==1>(_0{}, smem_pipe_read.index())));
- }
- Tensor rdS = make_tensor_like<Element>(tdPrdP);
- flash::convert_type_out(tdPrdP, rdS);
- // If there's double buffering on dS, we don't need to sync here.
- // Otherwise we might have WG1 writing to dS before WG2 is done reading from it during MmadQ.
- // But because both WGs have to sync at the end of the loop and double buffering,
- // this race condition is not possible.
- // This sync is to ensure (1) P is written in case of !Mma_dKV_is_RS and
- // (2) dS is already read by the Mma in the previous iteration in case of Mma_dKV_is_RS.
- if constexpr (!Mma_dKV_is_RS || (kStages_dS == 1 && Mma_dKV_is_RS)) {
- cutlass::arch::fence_view_async_shared();
- cutlass::arch::NamedBarrier::sync(NumMmaThreads, static_cast<int>(BwdNamedBarriers::PdS) /*id*/);
- }
- // For hdim 64, It's faster to write to smem_dS first before the dV gemm
- Tensor tdSadS = smem_thr_copy_PdS.retile_S(rdS); // ((Atom,AtomNum), MMA_N, MMA_N)
- cute::copy(smem_tiled_copy_PdS, tdSadS, tdSsdS(_, _, _, cute::conditional_return<kStages_dS==1>(_0{}, smem_pipe_read.index())));
- if constexpr (!Slice_dQKV_Mma) {
- // Most cases take this path, except for hdim256 where we want to slice to reduce register pressure
- if constexpr (Mma_dKV_is_RS) {
- Tensor tdVrP = make_tensor(rP.data(), convert_layout_acc_Aregs<TiledMmadKV>(tSrS.layout()));
- flash::gemm</*zero_init=*/false, /*wg_wait=*/-1>(tiled_mma_dKV, tdVrP, tdVrdO(_, _, _, smem_pipe_read_do_cur.index()), tdVrdV);
- } else {
- Tensor tdVrP = mma_partition_fragment_AB</*A=*/!dKV_swapAB>(wg_mma_dKV, sPt);
- Tensor tdVrP_cur = tdVrP(_, _, _, cute::conditional_return<kStages_dS==1>(_0{}, smem_pipe_read.index()));
- flash::gemm</*zero_init=*/false, /*wg_wait=*/-1, /*SwapAB=*/dKV_swapAB>(tiled_mma_dKV, tdVrP_cur, tdVrdO(_, _, _, smem_pipe_read_do_cur.index()), tdVrdV);
- }
- // SMEM fence to make sure sdS is written before it's read by WGMMA
- cutlass::arch::fence_view_async_shared();
- cutlass::arch::NamedBarrier::sync(NumMmaThreads, static_cast<int>(BwdNamedBarriers::PdS) /*id*/);
- Tensor tdQrdQ = partition_fragment_C(tiled_mma_dQ, select<!dQ_swapAB ? 0 : 2, !dQ_swapAB ? 2 : 0>(TileShape_MNK{}));
- Tensor tdQrdS_cur = tdQrdS(_, _, _, cute::conditional_return<kStages_dS==1>(_0{}, smem_pipe_read.index()));
- flash::gemm</*zero_init=*/true, /*wg_wait=*/1, /*SwapAB=*/dQ_swapAB>(tiled_mma_dQ, tdQrdS_cur, tdQrK, tdQrdQ);
- pipeline_do.consumer_release(smem_pipe_read_do_cur); // release dQ
- if constexpr (Mma_dKV_is_RS) {
- Tensor tdKrdS = make_tensor(rdS.data(), convert_layout_acc_Aregs<TiledMmadKV>(tdPrdP.layout()));
- flash::gemm</*zero_init=*/false, /*wg_wait=*/1>(tiled_mma_dKV, tdKrdS, tdKrQ(_, _, _, smem_pipe_read.index()), tdKrdK);
- } else {
- Tensor tdKrdS = mma_partition_fragment_AB</*A=*/!dKV_swapAB>(wg_mma_dKV, sdSt);
- Tensor tdKrdS_cur = tdKrdS(_, _, _, cute::conditional_return<kStages_dS==1>(_0{}, smem_pipe_read.index()));
- flash::gemm</*zero_init=*/false, /*wg_wait=*/1, /*SwapAB=*/dKV_swapAB>(tiled_mma_dKV, tdKrdS_cur, tdKrQ(_, _, _, smem_pipe_read.index()), tdKrdK);
- }
- if constexpr (dQacc_use_TMA) {
- int const warp_group_idx = flash::canonical_warp_group_idx_nosync() - 1;
- cutlass::arch::NamedBarrier::sync(cutlass::NumThreadsPerWarpGroup + cutlass::NumThreadsPerWarp, static_cast<int>(BwdNamedBarriers::dQEmptyWG1) + warp_group_idx /*id*/); // sdQ full, to be written to gmem
- Tensor taccdQrdQ = r2s_thr_copy_dQaccum.retile_S(tdQrdQ);
- cute::copy(r2s_tiled_copy_dQaccum, taccdQrdQ, tdQsdQaccum);
- cutlass::arch::fence_view_async_shared();
- cutlass::arch::NamedBarrier::arrive(cutlass::NumThreadsPerWarpGroup + cutlass::NumThreadsPerWarp, static_cast<int>(BwdNamedBarriers::dQFullWG1) + warp_group_idx /*id*/); // sdQ full, to be written to gmem
- } else {
- // We can reuse r2s_thr_copy_dQaccum for this partitioning
- Tensor tdQrdQ_atomic = recast<float4>(r2s_thr_copy_dQaccum.retile_S(tdQrdQ));
- Tensor tdQgdQaccum_atomic = recast<float4>(tdQgdQaccum(_, _, _, m_block));
- static_assert(CUTE_STATIC_V(size(tdQrdQ_atomic)) == CUTE_STATIC_V(size(tdQgdQaccum_atomic)));
- #pragma unroll
- for (int i = 0; i < size(tdQrdQ_atomic); ++i) { atomicAdd(&tdQgdQaccum_atomic(i), tdQrdQ_atomic(i)); }
- }
- } else { // Slice_dQKV_Mma
- static_assert(!(Slice_dQKV_Mma && Mma_dKV_is_RS));
- Tensor tdVrP = mma_partition_fragment_AB</*A=*/!dKV_swapAB>(wg_mma_dKV, sPt);
- Tensor tdVrP_cur = tdVrP(_, _, _, cute::conditional_return<kStages_dS==1>(_0{}, smem_pipe_read.index()));
- flash::gemm</*zero_init=*/false, /*wg_wait=*/-1, /*SwapAB=*/dKV_swapAB, /*M_slice=*/0>(tiled_mma_dKV, tdVrP_cur, tdVrdO(_, _, _, smem_pipe_read_do_cur.index()), tdVrdV);
- cutlass::arch::fence_view_async_shared();
- cutlass::arch::NamedBarrier::sync(NumMmaThreads, static_cast<int>(BwdNamedBarriers::PdS) /*id*/);
- Tensor tdQrdQ = partition_fragment_C(tiled_mma_dQ, select<!dQ_swapAB ? 0 : 2, !dQ_swapAB ? 2 : 0>(TileShape_MNK{}));
- Tensor tdQrdS_cur = tdQrdS(_, _, _, cute::conditional_return<kStages_dS==1>(_0{}, smem_pipe_read.index()));
- flash::gemm</*zero_init=*/true, /*wg_wait=*/-1, /*SwapAB=*/dQ_swapAB, /*M_slice=*/0>(tiled_mma_dQ, tdQrdS_cur, tdQrK, tdQrdQ);
- flash::gemm</*zero_init=*/false, /*wg_wait=*/1, /*SwapAB=*/dKV_swapAB, /*M_slice=*/1>(tiled_mma_dKV, tdVrP_cur, tdVrdO(_, _, _, smem_pipe_read_do_cur.index()), tdVrdV);
- Tensor tdQrdQ_atomic = recast<float4>(r2s_thr_copy_dQaccum.retile_S(tdQrdQ));
- Tensor tdQgdQaccum_atomic = recast<float4>(tdQgdQaccum(_, _, _, m_block));
- #pragma unroll
- for (int i = 0; i < size(tdQrdQ_atomic) / 2; ++i) { atomicAdd(&tdQgdQaccum_atomic(i), tdQrdQ_atomic(i)); }
- Tensor tdKrdS = mma_partition_fragment_AB</*A=*/!dKV_swapAB>(wg_mma_dKV, sdSt);
- Tensor tdKrdS_cur = tdKrdS(_, _, _, cute::conditional_return<kStages_dS==1>(_0{}, smem_pipe_read.index()));
- flash::gemm</*zero_init=*/false, /*wg_wait=*/1, /*SwapAB=*/dKV_swapAB, /*M_slice=*/0>(tiled_mma_dKV, tdKrdS_cur, tdKrQ(_, _, _, smem_pipe_read.index()), tdKrdK);
- pipeline_do.consumer_release(smem_pipe_read_do_cur); // release dO
- flash::gemm</*zero_init=*/true, /*wg_wait=*/0, /*SwapAB=*/dQ_swapAB, /*M_slice=*/1>(tiled_mma_dQ, tdQrdS_cur, tdQrK, tdQrdQ);
- #pragma unroll
- for (int i = size(tdQrdQ_atomic) / 2; i < size(tdQrdQ_atomic); ++i) { atomicAdd(&tdQgdQaccum_atomic(i), tdQrdQ_atomic(i)); }
- flash::gemm</*zero_init=*/false, /*wg_wait=*/-1, /*SwapAB=*/dKV_swapAB, /*M_slice=*/1>(tiled_mma_dKV, tdKrdS_cur, tdKrQ(_, _, _, smem_pipe_read.index()), tdKrdK);
- }
- warpgroup_wait<0>();
- pipeline_q.consumer_release(smem_pipe_read); // release Q
- ++smem_pipe_read;
- if constexpr (!Q_dO_same_stages) { ++smem_pipe_read_do; }
- };
- // We have separate iterations with causal masking. Not necessary for hdim 128 but for hdim 64
- // this helps quite a bit to not have to do causal masking for most of the iterations.
- if constexpr ((Is_causal || Is_local) && SeparateMaskingIterations) {
- auto mask_fn = [&](auto& tSrS, int m_block) { mask.template apply<true /*Seqlenk_mask*/, Is_causal, Is_local>(tSrS, m_block, n_block); };
- static constexpr int kBlockM = get<0>(TileShape_MNK{});
- int const m_block_masking_max = ((n_block + 1) * kBlockN - 1 + seqlen_q - seqlen_k - params.window_size_right) / kBlockM + 1;
- CUTLASS_PRAGMA_NO_UNROLL
- for (; m_block < std::min(m_block_max, m_block_masking_max); ++m_block) {
- bwd_step(m_block, mask_fn);
- }
- }
- static constexpr int kBlockM = get<0>(TileShape_MNK{});
- static constexpr int kBlockN = get<1>(TileShape_MNK{});
- int const m_block_max_before_local_mask = !Is_local || !SeparateMaskingIterations
- ? m_block_max
- : std::min(m_block_max, (n_block * kBlockN + seqlen_q - seqlen_k + params.window_size_left) / kBlockM);
- auto mask_fn = [&](auto& tSrS, int m_block) { mask.template apply<true /*Seqlenk_mask*/, Is_causal && !SeparateMaskingIterations, Is_local && !SeparateMaskingIterations>(tSrS, m_block, n_block); };
- CUTLASS_PRAGMA_NO_UNROLL
- for (; m_block < m_block_max_before_local_mask; ++m_block) {
- bwd_step(m_block, mask_fn);
- }
- if constexpr (Is_local && SeparateMaskingIterations) {
- auto mask_fn = [&](auto& tSrS, int m_block) { mask.template apply<true /*Seqlenk_mask*/, false /*Causal_mask*/, Is_local>(tSrS, m_block, n_block); };
- CUTLASS_PRAGMA_NO_UNROLL
- for (; m_block < m_block_max; ++m_block) {
- bwd_step(m_block, mask_fn);
- }
- }
- // if (blockIdx.x == 0 && threadIdx.x == 128) { print_tensor(tdVrdV); }
- #pragma unroll
- for (int i = 0; i < size(tdKrdK); ++i) { tdKrdK(i) *= params.softmax_scale; }
- if constexpr (Q_dO_same_stages) { smem_pipe_read_do = smem_pipe_read; }
- ++work_idx;
- return true;
- }
- };
- } // namespace flash
|