123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394 |
- /******************************************************************************
- * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
- ******************************************************************************/
- #pragma once
- #include <cutlass/cutlass.h>
- #include <cutlass/fast_math.h> // For FastDivMod
- #include "cute/tensor.hpp"
- #include "cutlass/gemm/collective/builders/sm90_common.inl"
- #include "cutlass/epilogue/collective/builders/sm90_common.inl"
- #include "seqlen.h"
- #include "named_barrier.hpp"
- #include "pack_gqa.h"
- #include "utils.h"
- namespace flash {
- using namespace cute;
- template <class TileShape_MNK_, class ClusterShape_, class Element_, int NumEpilogueThreads_, bool Varlen_, bool PackGQA_, bool FP8PermuteCol=false>
- struct CollectiveEpilogueFwd {
- using TileShape_MNK = TileShape_MNK_;
- using ClusterShape = ClusterShape_;
- using Element = Element_;
- static constexpr int NumEpilogueThreads = NumEpilogueThreads_;
- static constexpr bool Varlen = Varlen_;
- static constexpr bool PackGQA = PackGQA_;
- static constexpr bool Use_smem = sizeof(Element) <= 2;
- static constexpr bool Use_TMA_O = !Varlen && Use_smem && !PackGQA;
- static constexpr int kBlockM = get<0>(TileShape_MNK{});
- static constexpr int kHeadDim = get<2>(TileShape_MNK{});
- using GmemTiledCopyOTMA = cute::SM90_TMA_STORE;
- // These are for storing the output tensor without TMA (e.g., for setting output to zero)
- static constexpr int kGmemElemsPerStore = sizeof(cute::uint128_t) / sizeof(Element);
- static_assert(kHeadDim % kGmemElemsPerStore == 0, "Headdim must be a multiple of kGmemElemsPerStore");
- // We want each "row" to have 64 elements (128 bytes, i.e. 1 cache line). We want each thread to have 4 elements
- // in the M direction and 2 elements in the K direction. In the case of PackGQA, this reduces the number of times
- // we need to call divmod.
- static constexpr int kBytePerRow = kHeadDim * sizeof(Element);
- static constexpr int kBlockKGmem = (kBytePerRow % 128 == 0 ? 128 : (kBytePerRow % 64 == 0 ? 64 : 32)) / sizeof(Element);
- // static constexpr int kBlockKGmem = kHeadDim % 128 == 0 ? 128 : (kHeadDim % 64 == 0 ? 64 : 32);
- // static constexpr int kGmemThreadsPerRow = cutlass::gcd(kHeadDim / kGmemElemsPerStore, NumEpilogueThreads);
- static constexpr int kGmemThreadsPerRow = kBlockKGmem / kGmemElemsPerStore;
- // If PackGQA, we split the work of compute O_ptr among threads in the same row, so we need this to within a warp
- static_assert(cutlass::NumThreadsPerWarp % kGmemThreadsPerRow == 0);
- static_assert(NumEpilogueThreads % kGmemThreadsPerRow == 0, "NumEpilogueThreads must be a multiple of kGmemThreadsPerRow");
- using GmemLayoutAtom = Layout<Shape <Int<NumEpilogueThreads / kGmemThreadsPerRow>, Int<kGmemThreadsPerRow>>,
- Stride<Int<kGmemThreadsPerRow>, _1>>;
- static_assert(kBlockM % CUTE_STATIC_V(shape<0>(GmemLayoutAtom{})) == 0, "kBlockM must be a multiple of NumEpilogueThreads / kGmemThreadsPerRow");
- using GmemTiledCopyO = decltype(
- make_tiled_copy(Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, Element>{},
- GmemLayoutAtom{},
- Layout<Shape<_1, Int<kGmemElemsPerStore>>>{})); // Val layout, 8 or 16 vals per store
- using SmemLayoutAtomO = decltype(cutlass::gemm::collective::detail::ss_smem_selector<GMMA::Major::K, Element,
- decltype(cute::get<0>(TileShape_MNK{})), decltype(cute::get<2>(TileShape_MNK{}))>());
- using SmemLayoutO = decltype(tile_to_shape(SmemLayoutAtomO{}, select<0, 2>(TileShape_MNK{})));
- using ShapeO = cute::Shape<int32_t, int32_t, int32_t, int32_t, int32_t>; // (seqlen_q, d, head, batch, num_splits)
- using StrideO = cute::Stride<int64_t, _1, int64_t, int64_t, int64_t>;
- using StrideLSE = cute::Stride<_1, int64_t, int64_t, int64_t>; // (seqlen_q, head, batch, num_splits)
- // ((qhead_per_khead, seqlen_q), d, nheads_kv, batch, num_splits)
- using ShapeOPacked = std::conditional_t<!PackGQA, ShapeO, cute::Shape<cute::Shape<int32_t, int32_t>, int32_t, int32_t, int32_t, int32_t>>;
- using StrideOPacked = std::conditional_t<!PackGQA, StrideO, cute::Stride<cute::Stride<int64_t, int64_t>, _1, int64_t, int64_t, int64_t>>;
- // ((qhead_per_khead, seqlen_q), nheads_kv, batch, num_splits)
- using ShapeLSEPacked = std::conditional_t<!PackGQA, cute::Shape<int32_t, int32_t, int32_t, int32_t>, cute::Shape<cute::Shape<int32_t, int32_t>, int32_t, int32_t, int32_t>>;
- using StrideLSEPacked = std::conditional_t<!PackGQA, StrideLSE, cute::Stride<cute::Stride<int64_t, _1>, int64_t, int64_t, int64_t>>;
- // cute::SM90_U32x4_STSM_N if Element size is 2 bytes (fp16, bf16)
- using CopyOpR2S = decltype(cutlass::epilogue::collective::detail::sm90_get_smem_store_op_for_accumulator<StrideO, Element>());
- using SmemCopyAtomO = Copy_Atom<CopyOpR2S, Element>;
- // static constexpr size_t SmemAlignmentO = cutlass::detail::alignment_for_swizzle(SmemLayoutO{});
- // static_assert(SmemAlignmentO >= 128, "Require at least 128B alignment");
- // struct TensorStorage : cute::aligned_struct<SmemAlignmentO> {
- // cute::array_aligned<Element, Use_smem ? cute::cosize_v<SmemLayoutO> : 0, SmemAlignmentO> smem_o;
- // };
- struct TensorStorage : cute::aligned_struct<128> {
- cute::array_aligned<Element, Use_smem ? cute::cosize_v<SmemLayoutO> : 0> smem_o;
- };
- using TMA_O = decltype(make_tma_copy(
- GmemTiledCopyOTMA{},
- make_tensor(make_gmem_ptr(static_cast<Element*>(nullptr)), ShapeO{}, StrideO{}),
- SmemLayoutO{},
- select<0, 2>(TileShape_MNK{}),
- _1{})); // no mcast for O
- // Host side kernel arguments
- struct Arguments {
- Element* ptr_O;
- ShapeO const shape_O;
- StrideO const stride_O;
- float* ptr_LSE;
- StrideLSE const stride_LSE;
- int32_t const nheads_kv;
- int const* cu_seqlens = nullptr;
- int const* seqused = nullptr;
- };
- // Device side kernel params
- struct Params {
- Element* ptr_O;
- ShapeO const shape_O;
- StrideO const stride_O;
- ShapeOPacked const shape_O_packed;
- StrideOPacked const stride_O_packed;
- float* ptr_LSE;
- StrideLSE const stride_LSE;
- ShapeLSEPacked const shape_LSE_packed;
- StrideLSEPacked const stride_LSE_packed;
- cutlass::FastDivmod qhead_per_khead_divmod;
- TMA_O tma_store_O;
- int const* cu_seqlens = nullptr;
- int const* seqused = nullptr;
- };
- static Params
- to_underlying_arguments(Arguments const& args) {
- Tensor mO = make_tensor(make_gmem_ptr(args.ptr_O), args.shape_O, args.stride_O);
- TMA_O tma_store_O = make_tma_copy(
- GmemTiledCopyOTMA{},
- mO,
- SmemLayoutO{},
- select<0, 2>(TileShape_MNK{}),
- _1{}); // no mcast for O
- // If PackGQA, reshape O to be ((qhead_per_khead, seqlen_q), head_size, nhead_k, batch_size, num_splits)
- int const qhead_per_khead = !PackGQA ? 1 : cute::ceil_div(get<2>(args.shape_O), args.nheads_kv);
- auto const shape_O_packed = cute::conditional_return<!PackGQA>(
- args.shape_O,
- make_shape(make_shape(qhead_per_khead, get<0>(args.shape_O)), get<1>(args.shape_O), args.nheads_kv, get<3>(args.shape_O), get<4>(args.shape_O))
- );
- auto const stride_O_packed = cute::conditional_return<!PackGQA>(
- args.stride_O,
- make_stride(make_stride(get<2>(args.stride_O), get<0>(args.stride_O)), get<1>(args.stride_O), get<2>(args.stride_O) * qhead_per_khead, get<3>(args.stride_O), get<4>(args.stride_O))
- );
- // If PackGQA, Reshape LSE to be ((qhead_per_khead, seqlen_q), nhead_k, batch_size, num_splits)
- auto const shape_LSE_packed = cute::conditional_return<!PackGQA>(
- select<0, 2, 3, 4>(args.shape_O),
- make_shape(make_shape(qhead_per_khead, get<0>(args.shape_O)), args.nheads_kv, get<3>(args.shape_O), get<4>(args.shape_O))
- );
- auto const stride_LSE_packed = cute::conditional_return<!PackGQA>(
- args.stride_LSE,
- make_stride(make_stride(get<1>(args.stride_LSE), get<0>(args.stride_LSE)), get<1>(args.stride_LSE) * qhead_per_khead, get<2>(args.stride_LSE), get<3>(args.stride_LSE))
- );
- return {args.ptr_O, args.shape_O, args.stride_O, shape_O_packed, stride_O_packed,
- args.ptr_LSE, args.stride_LSE, shape_LSE_packed, stride_LSE_packed,
- cutlass::FastDivmod(qhead_per_khead),
- tma_store_O, args.cu_seqlens, args.seqused};
- }
- /// Issue Tma Descriptor Prefetch -- ideally from a single thread for best performance
- CUTLASS_DEVICE
- static void prefetch_tma_descriptors(Params const& params) {
- if constexpr (Use_TMA_O) {
- cute::prefetch_tma_descriptor(params.tma_store_O.get_tma_descriptor());
- }
- }
- template <typename SharedStorage, typename FrgTensorO, typename FrgTensorLSE, typename TiledMma>
- CUTLASS_DEVICE void
- store(Params const& params,
- FrgTensorO const& tOrO,
- FrgTensorLSE const& lse,
- SharedStorage& shared_storage,
- TiledMma tiled_mma,
- int thread_idx,
- cute::tuple<int32_t, int32_t, int32_t, int32_t> const& block_coord
- ) {
- auto [m_block, bidh, bidb, split_idx] = block_coord;
- Tensor sO = make_tensor(make_smem_ptr(shared_storage.tensors.epilogue.smem_o.data()), SmemLayoutO{});
- // Tensor sO_pi = cute::as_position_independent_swizzle_tensor(sO);
- Tensor tOrO_out = make_tensor_like<Element>(tOrO);
- flash::convert_type_out(tOrO, tOrO_out);
- if constexpr (FP8PermuteCol && (sizeof(Element) == 2 || sizeof(Element) == 4)) { flash::permute_output_fp8_Vcolmajor(tOrO_out); }
- // Make sure all WGs have finished reading V
- // Technically we don't need this if we're not using smem, but the mainloop makes the assumption that
- // all epilogue threads sync at least once during the epilogue (so that we can start loading Q with
- // cp.async if we need).
- cutlass::arch::NamedBarrier::sync(NumEpilogueThreads, cutlass::arch::ReservedNamedBarriers::EpilogueBarrier);
- // Step 1: Write O from rmem -> smem
- if constexpr (Use_smem) {
- auto smem_tiled_copy_O = make_tiled_copy_C(SmemCopyAtomO{}, tiled_mma);
- auto smem_thr_copy_O = smem_tiled_copy_O.get_thread_slice(thread_idx);
- Tensor taccOrO = smem_thr_copy_O.retile_S(tOrO_out); // ((Atom,AtomNum), MMA_M, MMA_N)
- Tensor taccOsO = smem_thr_copy_O.partition_D(sO); // ((Atom,AtomNum),PIPE_M,PIPE_N)
- // Tensor taccOsO = smem_thr_copy_O.partition_D(sO_pi); // ((Atom,AtomNum),PIPE_M,PIPE_N)
- cute::copy(smem_tiled_copy_O, taccOrO, taccOsO);
- if constexpr (!Varlen && !PackGQA) {
- cutlass::arch::fence_view_async_shared(); // ensure smem writes are visible to TMA
- cutlass::arch::NamedBarrier::arrive(NumEpilogueThreads + cutlass::NumThreadsPerWarp,
- cutlass::arch::ReservedNamedBarriers::EpilogueBarrier);
- } else {
- cutlass::arch::NamedBarrier::sync(NumEpilogueThreads, cutlass::arch::ReservedNamedBarriers::EpilogueBarrier);
- }
- } else {
- #pragma unroll
- for (uint32_t cta_id = 0; cta_id < size(ClusterShape{}); ++cta_id) {
- shared_storage.pipelines.barrier_O.arrive(cta_id);
- }
- }
- flash::SeqlenInfo<Varlen, kBlockM> seqlen_info{bidb, size<0>(params.shape_O), params.cu_seqlens, params.seqused};
- bool is_varlen = Varlen && params.cu_seqlens;
- int offset_o = seqlen_info.offset;
- int seqlen_o = seqlen_info.seqlen;
- // Step 2: Write LSE from rmem -> gmem
- auto thread_mma = tiled_mma.get_thread_slice(thread_idx);
- // (MMA,MMA_M,MMA_K)
- Tensor taccOcO = thread_mma.partition_C(cute::make_identity_tensor(select<0, 2>(TileShape_MNK{})));
- static_assert(decltype(size<0, 0>(taccOcO))::value == 2);
- static_assert(decltype(size<0, 1>(taccOcO))::value == 2);
- // taccOcO has shape ((2, 2, V), MMA_M, MMA_K), we only take only the row indices.
- Tensor taccOcO_row = taccOcO(make_coord(_0{}, _, _0{}), _, _0{});
- CUTE_STATIC_ASSERT_V(size(lse) == size(taccOcO_row)); // MMA_M
- using PackGQAt = flash::PackGQAManager<get<0>(TileShape_MNK{}), get<2>(TileShape_MNK{}), NumEpilogueThreads, Element>;
- Tensor mLSE = make_tensor(make_gmem_ptr(params.ptr_LSE + offset_o * get<0>(params.stride_LSE)), params.shape_LSE_packed, params.stride_LSE_packed)(_, bidh, !is_varlen ? bidb : 0, split_idx);
- // if (thread_idx == 0) { printf("Before LSE write, m_block: %d, bidh: %d, bidb: %d, split_idx: %d, offset_o: %d, seqlen_o: %d\n", m_block, bidh, bidb, split_idx, offset_o, seqlen_o); print(mLSE); printf("\n"); }
- if constexpr (!PackGQA) {
- #pragma unroll
- for (int mi = 0; mi < size(lse); ++mi) {
- int const row = m_block * kBlockM + get<0>(taccOcO_row(mi));
- if (get<1>(taccOcO_row(_0{})) == 0 && row < seqlen_o) { mLSE(row) = lse(mi); }
- }
- } else {
- PackGQAt::store_LSE(mLSE, lse, tiled_mma, params.qhead_per_khead_divmod, thread_idx, seqlen_o, m_block);
- }
- // Step 3: Write O from smem -> gmem
- if constexpr (Use_TMA_O) {
- Tensor mO = params.tma_store_O.get_tma_tensor(params.shape_O)(_, _, bidh, bidb, split_idx);
- Tensor gO = local_tile(mO, select<0, 2>(TileShape_MNK{}), make_coord(m_block, _0{})); // (M, K)
- auto block_tma_O = params.tma_store_O.get_slice(_0{});
- Tensor tOgO = block_tma_O.partition_D(gO); // (TMA, TMA_M, TMA_K)
- Tensor tOsO = block_tma_O.partition_S(sO); // (TMA, TMA_M, TMA_K)
- int warp_idx_sync = __shfl_sync(0xffffffff, thread_idx / cutlass::NumThreadsPerWarp, 0);
- if (warp_idx_sync == NumEpilogueThreads / cutlass::NumThreadsPerWarp - 1) {
- cutlass::arch::NamedBarrier::sync(NumEpilogueThreads + cutlass::NumThreadsPerWarp,
- cutlass::arch::ReservedNamedBarriers::EpilogueBarrier);
- if (cute::elect_one_sync()) {
- cute::copy(params.tma_store_O, tOsO, tOgO);
- tma_store_arrive();
- tma_store_wait<0>();
- #pragma unroll
- for (uint32_t cta_id = 0; cta_id < size(ClusterShape{}); ++cta_id) {
- shared_storage.pipelines.barrier_O.arrive(cta_id);
- }
- }
- }
- } else { // Don't use TMA since we don't want to overwrite the output of another sequence
- Tensor mO = make_tensor(make_gmem_ptr(params.ptr_O + offset_o * get<0>(params.stride_O)), params.shape_O_packed, params.stride_O_packed)(_, _, bidh, !is_varlen ? bidb : 0, split_idx);
- Tensor gO = local_tile(mO, select<0, 2>(TileShape_MNK{}), make_coord(m_block, _0{})); // (M, K)
- // if (thread_idx == 0) { printf("Before O write, m_block: %d, bidh: %d, bidb: %d, split_idx: %d, offset_o: %d, seqlen_o: %d, mO_addr = %p, addr diff = %d\n", m_block, bidh, bidb, split_idx, offset_o, seqlen_o, mO.data(), reinterpret_cast<int>(&mO(0)) - reinterpret_cast<int>(params.ptr_O)); }
- if constexpr (Use_smem) {
- GmemTiledCopyO gmem_tiled_copy_O;
- auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(thread_idx);
- Tensor tOsO = gmem_thr_copy_O.partition_S(sO); // ((Atom,AtomNum),ATOM_M,ATOM_N)
- // Tensor tOsO = gmem_thr_copy_O.partition_S(sO_pi); // ((Atom,AtomNum),ATOM_M,ATOM_N)
- Tensor tOrO = make_fragment_like(tOsO);
- cute::copy(gmem_tiled_copy_O, tOsO, tOrO);
- cutlass::arch::fence_view_async_shared(); // ensure smem reads are done before next TMA to smem_v
- #pragma unroll
- for (uint32_t cta_id = 0; cta_id < size(ClusterShape{}); ++cta_id) {
- shared_storage.pipelines.barrier_O.arrive(cta_id);
- }
- if constexpr (!PackGQA) {
- // (BLK_M,BLK_K) -> (blk_m,blk_k)
- Tensor tOcO = gmem_thr_copy_O.partition_D(cute::make_identity_tensor(select<0, 2>(TileShape_MNK{})));
- Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOsO)));
- #pragma unroll
- for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(_0{}, _0{}, k)) < get<1>(params.shape_O); }
- Tensor tOgO = gmem_thr_copy_O.partition_D(gO);
- // Clear_OOB_K must be false since we don't want to write zeros to gmem
- flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
- gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, seqlen_o - m_block * kBlockM
- );
- } else {
- // If PackGQA, we split the work of compute O_ptr among threads in the same row
- PackGQAt::store_O(mO, tOrO, params.qhead_per_khead_divmod, thread_idx, seqlen_o, m_block);
- }
- } else {
- // We already arrived on barrier_O earlier
- if constexpr (!PackGQA) {
- static constexpr int kGmemElemsPerStoreDirect = 2;
- cute::Copy_Atom<AutoVectorizingCopyWithAssumedAlignment<128>, Element> gmem_copy_direct;
- // Reshape acc from ((2, 2, V), MMA_M, MMA_N) to (nrow=(2, MMA_M), ncol=(2, V, MMA_N))
- Tensor tOrO_rowcol = make_tensor(tOrO_out.data(), flash::convert_layout_acc_rowcol(tOrO.layout()));
- Tensor tOrO_copy = cute::tiled_divide(tOrO_rowcol, Shape<_1, Int<kGmemElemsPerStoreDirect>>{});
- Tensor tOgO = thread_mma.partition_C(gO);
- Tensor tOgO_rowcol = make_tensor(tOgO.data(), flash::convert_layout_acc_rowcol(tOgO.layout()));
- Tensor tOgO_copy = cute::tiled_divide(tOgO_rowcol, Shape<_1, Int<kGmemElemsPerStoreDirect>>{});
- // taccOcO has shape ((2, 2, V), MMA_M, MMA_K), we only take only the col indices.
- Tensor taccOcO_col = taccOcO(make_coord(_, _0{}, _), _0{}, _);
- #pragma unroll
- for (int m = 0; m < size(taccOcO_row); ++m) {
- if (get<0>(taccOcO_row(m)) < seqlen_o - m_block * kBlockM) {
- #pragma unroll
- for (int k = 0; k < size(taccOcO_col) / kGmemElemsPerStoreDirect; ++k) {
- if (get<1>(taccOcO_col(k * kGmemElemsPerStoreDirect)) < get<1>(params.shape_O)) {
- cute::copy(gmem_copy_direct, tOrO_copy(_, m, k), tOgO_copy(_, m, k));
- }
- }
- }
- }
- } else {
- PackGQAt::store_O_direct(mO, tOrO_out, tiled_mma, params.qhead_per_khead_divmod, thread_idx, seqlen_o, m_block);
- }
- }
- }
- }
- CUTLASS_DEVICE void
- store_tail() {
- // Don't need to do tma_store_wait<0>() here since we already did in @store
- }
- // Write 0 to output and -inf to LSE
- template <bool Clear_O=true>
- CUTLASS_DEVICE void
- store_zero(
- Params const& params,
- int thread_idx,
- cute::tuple<int32_t, int32_t, int32_t, int32_t> const& block_coord
- ) {
- static constexpr int kBlockM = get<0>(TileShape_MNK{});
- auto [m_block, bidh, bidb, split_idx] = block_coord;
- flash::SeqlenInfo<Varlen, kBlockM> seqlen_info{bidb, size<0>(params.shape_O), params.cu_seqlens, params.seqused};
- bool const is_varlen = Varlen && params.cu_seqlens;
- int offset_o = seqlen_info.offset;
- int seqlen_o = seqlen_info.seqlen;
- int qhead_per_khead = !PackGQA ? 1 : params.qhead_per_khead_divmod.divisor;
- Tensor mO = make_tensor(make_gmem_ptr(params.ptr_O + offset_o * get<0>(params.stride_O)), params.shape_O_packed, params.stride_O_packed)(_, _, bidh, !is_varlen ? bidb : 0, split_idx);
- Tensor mLSE = make_tensor(make_gmem_ptr(params.ptr_LSE + offset_o * get<0>(params.stride_LSE)), params.shape_LSE_packed, params.stride_LSE_packed)(_, bidh, !is_varlen ? bidb : 0, split_idx);
- Tensor gLSE = local_tile(mLSE, Shape<Int<kBlockM>>{}, make_coord(m_block));
- static_assert(kBlockM <= NumEpilogueThreads);
- if (thread_idx < kBlockM) {
- const int row = m_block * kBlockM + thread_idx;
- if constexpr (!PackGQA) {
- if (row < seqlen_o) { mLSE(row) = -INFINITY; }
- } else {
- if (row < seqlen_o * qhead_per_khead) {
- int m_idx, h_idx;
- m_idx = params.qhead_per_khead_divmod.divmod(h_idx, row);
- // mLSE shape shape ((qhead_per_khead, seqlen_q)) and it's unhappy with just 1 "make_coord"
- mLSE(make_coord(make_coord(h_idx, m_idx))) = -INFINITY;
- }
- }
- }
- if constexpr (!Clear_O) { return; }
- GmemTiledCopyO gmem_tiled_copy_O;
- auto gmem_thr_copy_O = gmem_tiled_copy_O.get_thread_slice(thread_idx);
- Tensor tOcO = gmem_thr_copy_O.partition_D(cute::make_identity_tensor(select<0, 2>(TileShape_MNK{})));
- if constexpr (!PackGQA) {
- Tensor tOpO = make_tensor<bool>(make_shape(size<2>(tOcO)));
- #pragma unroll
- for (int k = 0; k < size(tOpO); ++k) { tOpO(k) = get<1>(tOcO(_0{}, _0{}, k)) < get<1>(params.shape_O); }
- Tensor gO = local_tile(mO, select<0, 2>(TileShape_MNK{}), make_coord(m_block, _0{})); // (M, K)
- Tensor tOgO = gmem_thr_copy_O.partition_D(gO);
- Tensor tOrO = make_fragment_like(tOgO);
- cute::clear(tOrO);
- // Clear_OOB_K must be false since we don't want to write zeros to gmem
- flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
- gmem_tiled_copy_O, tOrO, tOgO, tOcO, tOpO, seqlen_o - m_block * kBlockM
- );
- } else {
- // If PackGQA, we split the work of compute O_ptr among threads in the same row
- using PackGQAt = flash::PackGQAManager<get<0>(TileShape_MNK{}), get<2>(TileShape_MNK{}), NumEpilogueThreads, Element>;
- Tensor tOrO = make_tensor<Element>(make_shape(Shape<_1, Int<kGmemElemsPerStore>>{}, size<1>(tOcO), size<2>(tOcO)));
- cute::clear(tOrO);
- PackGQAt::store_O(mO, tOrO, params.qhead_per_khead_divmod, thread_idx, seqlen_o, m_block);
- }
- }
- };
- } // namespace flash
|