123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275 |
- # Copyright (c) 2024, Sanghun Cho, Tri Dao.
- import pickle
- import math
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from einops import rearrange, repeat
- from flash_attn.layers.rotary import apply_rotary_emb
- from flash_attn.utils.benchmark import benchmark_all, benchmark_forward, benchmark_backward
- from flash_attn.utils.benchmark import benchmark_fwd_bwd, benchmark_combined
- from flash_attn import flash_attn_qkvpacked_func, flash_attn_func
- try:
- import xformers.ops as xops
- except ImportError:
- xops = None
- def generate_cos_sin(seqlen, rotary_dim, device, dtype):
- assert rotary_dim % 2 == 0
- angle = torch.rand(seqlen * 2, rotary_dim // 2, device=device) * 2 * math.pi
- cos = torch.cos(angle).to(dtype=dtype)
- sin = torch.sin(angle).to(dtype=dtype)
- return cos, sin
- def flash_rotary(q, k, v, cos, sin, causal=False):
- # corrected by @tridao comments
- q = apply_rotary_emb(
- q, cos, sin, seqlen_offsets=0, interleaved=False, inplace=True
- )
- k = apply_rotary_emb(
- k, cos, sin, seqlen_offsets=0, interleaved=False, inplace=True
- )
- return flash_attn_func(q, k, v, causal=causal)
- def attn_bias_from_alibi_slopes(
- slopes, seqlen_q, seqlen_k, query_padding_mask=None, key_padding_mask=None, causal=False
- ):
- batch, nheads = slopes.shape
- device = slopes.device
- slopes = rearrange(slopes, "b h -> b h 1 1")
- if causal:
- return torch.arange(-seqlen_k + 1, 1, device=device, dtype=torch.float32) * slopes
- else:
- row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1")
- col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
- sk = (
- seqlen_k
- if key_padding_mask is None
- else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
- )
- sq = (
- seqlen_q
- if query_padding_mask is None
- else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
- )
- relative_pos = torch.abs(row_idx + sk - sq - col_idx)
- return -slopes * relative_pos.to(dtype=slopes.dtype)
- def flops(batch, seqlen, headdim, nheads, causal, mode="fwd"):
- assert mode in ["fwd", "bwd", "fwd_bwd"]
- f = 4 * batch * seqlen**2 * nheads * headdim // (2 if causal else 1)
- return f if mode == "fwd" else (2.5 * f if mode == "bwd" else 3.5 * f)
- def efficiency(flop, time):
- return (flop / time / 10**12) if not math.isnan(time) else 0.0
- def attention_pytorch(q, k, v, dropout_p=0.0, causal=True, attn_bias=None):
- """
- Arguments:
- q, k, v: (batch_size, seqlen, nheads, head_dim)
- dropout_p: float
- attn_bias: (batch_size, nheads, seqlen, seqlen) or (1, nheads, seqlen, seqlen)
- Output:
- output: (batch_size, seqlen, nheads, head_dim)
- """
- batch_size, seqlen, nheads, d = q.shape
- q = rearrange(q, 'b t h d -> (b h) t d')
- k = rearrange(k, 'b s h d -> (b h) d s')
- softmax_scale = 1.0 / math.sqrt(d)
- # Preallocate attn_weights for `baddbmm`
- if attn_bias is not None:
- scores = rearrange(attn_bias, 'b h t s -> (b h) t s')
- else:
- scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=q.dtype, device=q.device)
- scores = rearrange(torch.baddbmm(scores, q, k, beta=1.0, alpha=softmax_scale),
- '(b h) t s -> b h t s', h=nheads)
- if causal:
- # "triu_tril_cuda_template" not implemented for 'BFloat16'
- # So we have to construct the mask in float
- causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
- # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
- scores = scores + causal_mask.to(dtype=scores.dtype)
- attention = torch.softmax(scores, dim=-1)
- attention_drop = F.dropout(attention, dropout_p)
- output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
- return output.to(dtype=q.dtype)
- def time_fwd_bwd(func, *args, **kwargs):
- time_f, time_b = benchmark_fwd_bwd(func, *args, **kwargs)
- return time_f[1].mean, time_b[1].mean
- repeats = 30
- device = 'cuda'
- dtype = torch.float16
- bs_seqlen_vals = [(32, 512), (16, 1024), (8, 2048), (4, 4096), (2, 8192), (1, 16384)]
- causal_vals = [False, True]
- headdim_vals = [64, 128]
- dim = 2048
- dropout_p = 0.0
- methods = (["fa2_alibi", "torch"]
- + (["xformers"] if xops is not None else [])
- + ["sdpa"]
- + ["fa2_baseline"]
- + ["fa2_rotary"])
- time_f = {}
- time_b = {}
- time_f_b = {}
- speed_f = {}
- speed_b = {}
- speed_f_b = {}
- for causal in causal_vals:
- for headdim in headdim_vals:
- for batch_size, seqlen in bs_seqlen_vals:
- config = (causal, headdim, batch_size, seqlen)
- nheads = dim // headdim
- q, k, v = [torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype,
- requires_grad=True) for _ in range(3)]
- # alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
- alibi_slopes = torch.rand(1, nheads, device=device, dtype=torch.float32) * 0.3
- attn_bias = attn_bias_from_alibi_slopes(alibi_slopes, seqlen, seqlen, causal=causal).to(dtype)
- attn_bias = repeat(attn_bias, "1 ... -> b ...", b=batch_size)
- f, b = time_fwd_bwd(
- flash_attn_func,
- q, k, v,
- dropout_p,
- causal=causal,
- # alibi_slopes=alibi_slopes,
- alibi_slopes=None,
- repeats=repeats,
- verbose=False
- )
- time_f[config, "fa2_baseline"] = f
- time_b[config, "fa2_baseline"] = b
- q = q.detach().requires_grad_(True)
- k = k.detach().requires_grad_(True)
- v = v.detach().requires_grad_(True)
- f, b = time_fwd_bwd(
- flash_attn_func,
- q, k, v,
- dropout_p,
- causal=causal,
- alibi_slopes=rearrange(alibi_slopes, "1 h -> h"),
- # alibi_slopes=None,
- repeats=repeats,
- verbose=False
- )
- time_f[config, "fa2_alibi"] = f
- time_b[config, "fa2_alibi"] = b
- try:
- q = q.detach().requires_grad_(True)
- k = k.detach().requires_grad_(True)
- v = v.detach().requires_grad_(True)
- f, b = time_fwd_bwd(
- attention_pytorch,
- q, k, v,
- dropout_p,
- causal=causal,
- attn_bias=attn_bias,
- repeats=repeats,
- verbose=False
- )
- except: # Skip if OOM
- f, b = float('nan'), float('nan')
- time_f[config, "torch"] = f
- time_b[config, "torch"] = b
- # F.sdpa doesn't currently (torch 2.1) dispatch to flash-attn but just to be safe
- with torch.backends.cuda.sdp_kernel(enable_flash=False):
- q_pt = q.detach().requires_grad_(True).transpose(1, 2)
- k_pt = k.detach().requires_grad_(True).transpose(1, 2)
- v_pt = v.detach().requires_grad_(True).transpose(1, 2)
- f, b = time_fwd_bwd(
- F.scaled_dot_product_attention,
- q_pt, k_pt, v_pt,
- attn_mask=attn_bias,
- dropout_p=dropout_p,
- is_causal=causal,
- repeats=repeats,
- verbose=False
- )
- time_f[config, "sdpa"] = f
- time_b[config, "sdpa"] = b
- if xops is not None:
- q = q.detach().requires_grad_(True)
- k = k.detach().requires_grad_(True)
- v = v.detach().requires_grad_(True)
- if causal:
- attn_bias_xops = xops.LowerTriangularMask().add_bias(attn_bias.expand(-1, -1, seqlen, -1).to(dtype=q.dtype))
- # NotImplementedError: No operator found for `memory_efficient_attention_backward` with inputs:
- # `flshattB@v2.3.6` is not supported because:
- # attn_bias type is <class 'xformers.ops.fmha.attn_bias.LowerTriangularMaskWithTensorBias'>
- # `cutlassB` is not supported because:
- # attn_bias type is <class 'xformers.ops.fmha.attn_bias.LowerTriangularMaskWithTensorBias'>
- attn_bias_xops = attn_bias_xops.materialize((batch_size, nheads, seqlen, seqlen), dtype=q.dtype, device=device)
- else:
- attn_bias_xops = attn_bias.to(dtype=q.dtype)
- f, b = time_fwd_bwd(
- xops.memory_efficient_attention,
- q, k, v,
- attn_bias_xops,
- dropout_p,
- repeats=repeats,
- verbose=False
- )
- time_f[config, "xformers"] = f
- time_b[config, "xformers"] = b
- q = q.detach().requires_grad_(True)
- k = k.detach().requires_grad_(True)
- v = v.detach().requires_grad_(True)
- cos, sin = generate_cos_sin(seqlen, headdim, device, dtype)
- f, b = time_fwd_bwd(
- flash_rotary,
- q, k, v,
- cos, sin,
- causal,
- repeats=repeats,
- verbose=False
- )
- time_f[config, "fa2_rotary"] = f
- time_b[config, "fa2_rotary"] = b
- print(f"### causal={causal}, headdim={headdim}, batch_size={batch_size}, seqlen={seqlen} ###")
- csv_output = ""
- csv_output += f"{causal},{headdim},{batch_size},{seqlen},"
- for method in methods:
- time_f_b[config, method] = time_f[config, method] + time_b[config, method]
- speed_f[config, method] = efficiency(
- flops(batch_size, seqlen, headdim, nheads, causal, mode="fwd"),
- time_f[config, method]
- )
- speed_b[config, method] = efficiency(
- flops(batch_size, seqlen, headdim, nheads, causal, mode="bwd"),
- time_b[config, method]
- )
- speed_f_b[config, method] = efficiency(
- flops(batch_size, seqlen, headdim, nheads, causal, mode="fwd_bwd"),
- time_f_b[config, method]
- )
- print(
- f"{method} fwd: {speed_f[config, method]:.2f} TFLOPs/s, "
- f"bwd: {speed_b[config, method]:.2f} TFLOPs/s, "
- f"fwd + bwd: {speed_f_b[config, method]:.2f} TFLOPs/s"
- )
- csv_output += f"{speed_f[config, method]:.2f},{speed_b[config, method]:.2f},{speed_f_b[config, method]:.2f},"
- print(csv_output)
|