test_flash_attn.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330
  1. import math
  2. import pytest
  3. import torch
  4. import torch.nn.functional as F
  5. from einops import rearrange, repeat
  6. from flash_attn_interface import flash_attn_func, flash_attn_varlen_func
  7. from tests.test_util import generate_random_padding_mask, generate_qkv, construct_local_mask, attention_ref
  8. ABS_TOL = 5e-3
  9. REL_TOL = 1e-1
  10. def print_diffs(out, out_ref):
  11. out_1d = out.flatten()
  12. out_ref_1d = out_ref.flatten()
  13. for idx, (e_o, e_o_ref) in enumerate(zip(out_1d, out_ref_1d)):
  14. diff = e_o - e_o_ref
  15. abs_diff = abs(diff)
  16. abs_ref = abs(e_o_ref + 1e-5)
  17. relative_diff = abs_diff / abs_ref
  18. if abs_diff > ABS_TOL or relative_diff > REL_TOL:
  19. print(f"==== diff ==== {idx}, test: {e_o}, ref: {e_o_ref}")
  20. @pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
  21. # @pytest.mark.parametrize("dtype", [torch.float8_e4m3fn])
  22. @pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
  23. # @pytest.mark.parametrize("mha_type", ["mha"])
  24. @pytest.mark.parametrize("causal", [False, True])
  25. # @pytest.mark.parametrize("causal", [True])
  26. # @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
  27. # @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
  28. # @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
  29. # @pytest.mark.parametrize('d', [56, 80])
  30. @pytest.mark.parametrize("d", [64, 128, 256])
  31. # @pytest.mark.parametrize("d", [128])
  32. @pytest.mark.parametrize(
  33. "seqlen_q,seqlen_k",
  34. [
  35. (1, 1),
  36. (257, 1),
  37. (64, 128),
  38. (128, 128),
  39. (256, 256),
  40. (113, 203),
  41. (128, 217),
  42. (113, 211),
  43. (108, 256),
  44. (256, 512),
  45. (384, 256),
  46. (640, 128),
  47. (512, 256),
  48. (1024, 1024),
  49. (1023, 1024),
  50. (1024, 1023),
  51. (4096, 4096),
  52. ],
  53. )
  54. # @pytest.mark.parametrize('seqlen_q,seqlen_k', [(128, 128)])
  55. def test_flash_attn_output(
  56. seqlen_q, seqlen_k, d, causal, mha_type, dtype,
  57. ):
  58. device = "cuda"
  59. if(dtype == torch.float8_e4m3fn):
  60. dtype_init = torch.float16
  61. else:
  62. dtype_init = dtype
  63. print(dtype)
  64. # set seed
  65. torch.random.manual_seed(0)
  66. # batch_size = 40
  67. # nheads = 16
  68. batch_size = 4
  69. nheads = 6
  70. nheads_kv = 6 if mha_type == "mha" else (2 if mha_type == "gqa" else 1)
  71. # nheads_kv = 2
  72. # batch_size = 9
  73. # nheads = 6
  74. q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype_init, requires_grad=True)
  75. k = torch.randn(batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype_init, requires_grad=True)
  76. v = torch.randn(batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype_init, requires_grad=True)
  77. q = q.to(dtype)
  78. k = k.to(dtype)
  79. v = v.to(dtype)
  80. out, lse = flash_attn_func(q, k, v, causal=causal)
  81. q = q.to(dtype_init)
  82. k = k.to(dtype_init)
  83. v = v.to(dtype_init)
  84. out_ref, attn_ref = attention_ref(
  85. q,
  86. k,
  87. v,
  88. None,
  89. None,
  90. causal=causal,
  91. )
  92. out_pt, attn_pt = attention_ref(
  93. q,
  94. k,
  95. v,
  96. None,
  97. None,
  98. causal=causal,
  99. upcast=False,
  100. reorder_ops=True,
  101. )
  102. # qk = torch.einsum('bshd,bthd->bhst', q, k).float()
  103. # m = qk.amax(-1, keepdim=True)
  104. # s_tmp = torch.exp((qk - m) / math.sqrt(d))
  105. # exp_sum = s_tmp.sum(-1)
  106. # qk = torch.einsum('bthd,bshd->bhts', q.float() / math.sqrt(d), k.float())
  107. # lse_ref = torch.logsumexp(qk, dim=-1)
  108. print(f"Output max diff: {(out - out_ref).abs().max().item()}")
  109. print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
  110. print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
  111. print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
  112. # if not causal:
  113. # print(f"LSE max diff: {(lse - lse_ref).abs().max().item()}")
  114. # breakpoint()
  115. # if d <= 128:
  116. # g = torch.randn_like(out)
  117. # do_o = (g.float() * out.float()).sum(-1)
  118. # dq, dk, dv = torch.autograd.grad(out, (q, k, v), g)
  119. # dq_ref, dk_ref, dv_ref = torch.autograd.grad(out_ref, (q, k, v), g)
  120. # dq_pt, dk_pt, dv_pt = torch.autograd.grad(out_pt, (q, k, v), g)
  121. # print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
  122. # print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
  123. # print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
  124. # print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
  125. # print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
  126. # print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
  127. # print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
  128. # print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
  129. # print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
  130. # print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
  131. # print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
  132. # print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
  133. # dS = torch.einsum('bthd,bshd->bhts', g.float(), v.float())
  134. # P = torch.softmax(qk, -1)
  135. # dP = P * (dS - do_o.unsqueeze(1))
  136. # dQ = torch.einsum('bhts,bshd->bthd', dP, k.float())
  137. # dV = torch.einsum('bhts,bthd->bshd', P, g.float())
  138. # dK = torch.einsum('bhts,bthd->bshd', dP, q.float())
  139. # breakpoint()
  140. # Check that FlashAttention's numerical error is at most twice the numerical error
  141. # of a Pytorch implementation.
  142. # breakpoint()
  143. if(dtype != torch.float8_e4m3fn):
  144. assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
  145. else:
  146. # just test correctness of fp8 kernel w/o further quantization techniques
  147. assert (out - out_ref).abs().max().item() <= 40 * (out_pt - out_ref).abs().max().item()
  148. # if d <= 128:
  149. # assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item()
  150. # assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item()
  151. # assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item()
  152. @pytest.mark.parametrize("dtype", [torch.float16])
  153. @pytest.mark.parametrize("causal", [False, True])
  154. @pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
  155. # @pytest.mark.parametrize('causal', [True])
  156. # @pytest.mark.parametrize("d", [32, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
  157. # @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
  158. # @pytest.mark.parametrize('d', [128])
  159. @pytest.mark.parametrize("d", [64, 128, 256])
  160. @pytest.mark.parametrize(
  161. "seqlen_q,seqlen_k",
  162. [
  163. (1, 1),
  164. (1, 3),
  165. (2, 1),
  166. (511, 1),
  167. (3, 513),
  168. (64, 128),
  169. (113, 203),
  170. (128, 128),
  171. (128, 217),
  172. (113, 211),
  173. (108, 256),
  174. (256, 512),
  175. (384, 256),
  176. (512, 256),
  177. (640, 128),
  178. (1024, 1024),
  179. (1023, 1024),
  180. (1024, 1023),
  181. (2048, 2048),
  182. ],
  183. )
  184. # @pytest.mark.parametrize('seqlen_q,seqlen_k', [(128, 128)])
  185. def test_flash_attn_varlen_output(
  186. seqlen_q, seqlen_k, d, causal, mha_type, dtype
  187. ):
  188. if (
  189. max(seqlen_q, seqlen_k) >= 2048
  190. and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
  191. ):
  192. pytest.skip() # Reference implementation OOM
  193. device = "cuda"
  194. # set seed
  195. torch.random.manual_seed(0)
  196. # batch_size = 1
  197. # nheads = 1
  198. batch_size = 9
  199. nheads = 6
  200. nheads_kv = 6 if mha_type == "mha" else (2 if mha_type == "gqa" else 1)
  201. q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
  202. k = torch.randn(
  203. batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype, requires_grad=True
  204. )
  205. v = torch.randn(
  206. batch_size, seqlen_k, nheads_kv, d, device=device, dtype=dtype, requires_grad=True
  207. )
  208. query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
  209. key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random")
  210. # key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode='full')
  211. (
  212. q_unpad,
  213. k_unpad,
  214. v_unpad,
  215. cu_seqlens_q,
  216. cu_seqlens_k,
  217. max_seqlen_q,
  218. max_seqlen_k,
  219. q,
  220. k,
  221. v,
  222. output_pad_fn,
  223. dq_pad_fn,
  224. dk_pad_fn,
  225. ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
  226. # print("cu_seqlens_q: ", cu_seqlens_q)
  227. # print("cu_seqlens_k: ", cu_seqlens_k)
  228. # print("q_unpad, shape: ", q_unpad.shape)
  229. # print("k_unpad, shape: ", k_unpad.shape)
  230. # print("v_unpad, shape: ", v_unpad.shape)
  231. out_unpad, sm_lse = flash_attn_varlen_func(
  232. q_unpad,
  233. k_unpad,
  234. v_unpad,
  235. cu_seqlens_q,
  236. cu_seqlens_k,
  237. max_seqlen_q,
  238. max_seqlen_k,
  239. causal=causal,
  240. )
  241. out = output_pad_fn(out_unpad)
  242. dropout_mask = None
  243. out_ref, attn_ref = attention_ref(
  244. q,
  245. k,
  246. v,
  247. query_padding_mask,
  248. key_padding_mask,
  249. causal=causal,
  250. )
  251. out_pt, attn_pt = attention_ref(
  252. q,
  253. k,
  254. v,
  255. query_padding_mask,
  256. key_padding_mask,
  257. causal=causal,
  258. upcast=False,
  259. reorder_ops=True,
  260. )
  261. print(f"Output max diff: {(out - out_ref).abs().max().item()}")
  262. print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
  263. print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
  264. print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
  265. # g = torch.randn_like(out)
  266. # if d <= 128:
  267. # (
  268. # dq_unpad,
  269. # dk_unpad,
  270. # dv_unpad,
  271. # ) = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g)
  272. # dk = dk_pad_fn(dk_unpad)
  273. # dv = dk_pad_fn(dv_unpad)
  274. # (
  275. # dq_ref,
  276. # dk_ref,
  277. # dv_ref,
  278. # ) = torch.autograd.grad(out_ref, (q, k, v), g)
  279. # (
  280. # dq_pt,
  281. # dk_pt,
  282. # dv_pt,
  283. # ) = torch.autograd.grad(out_pt, (q, k, v), g)
  284. # dq = dq_pad_fn(dq_unpad)
  285. # print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
  286. # print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
  287. # print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
  288. # print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
  289. # print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
  290. # print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
  291. # print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
  292. # print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
  293. # print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
  294. # print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
  295. # print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
  296. # print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
  297. # Check that FlashAttention's numerical error is at most twice the numerical error
  298. # of a Pytorch implementation.
  299. assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
  300. # if d <= 128:
  301. # assert (dq - dq_ref).abs().max().item() < 1e-4 or (dq - dq_ref).abs().max().item() <= 3 * (dq_pt - dq_ref).abs().max().item()
  302. # assert (dk - dk_ref).abs().max().item() < 1e-4 or (dk - dk_ref).abs().max().item() <= 3 * (dk_pt - dk_ref).abs().max().item()
  303. # assert (dk - dk_ref).abs().max().item() < 1e-4 or (dv - dv_ref).abs().max().item() <= 3 * (dv_pt - dv_ref).abs().max().item()