123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184 |
- # Copyright (c) 2023, Tri Dao.
- import time
- import pytest
- import torch
- from flash_attn.models.gpt import GPTLMHeadModel
- from flash_attn.models.gptj import gptj_config_to_gpt2_config, remap_state_dict_hf_gptj
- from flash_attn.utils.generation import update_graph_cache
- from flash_attn.utils.pretrained import state_dict_from_pretrained
- from transformers import AutoTokenizer, GPTJConfig
- from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
- @pytest.mark.parametrize("model_name", ["EleutherAI/gpt-j-6B"])
- def test_gptj_state_dict(model_name):
- config = gptj_config_to_gpt2_config(GPTJConfig.from_pretrained(model_name))
- pretrained_state_dict = remap_state_dict_hf_gptj(state_dict_from_pretrained(model_name), config)
- model = GPTLMHeadModel(config, device="meta") # Without device='meta' init is very slow
- state_dict = model.state_dict()
- assert state_dict.keys() == pretrained_state_dict.keys()
- for k in state_dict.keys():
- assert state_dict[k].shape == pretrained_state_dict[k].shape
- @pytest.mark.parametrize("model_name", ["EleutherAI/gpt-j-6B", "togethercomputer/GPT-JT-6B-v1"])
- def test_gptj_optimized(model_name):
- """Check that our implementation of GPT-J (with all optimizations enabled) matches the
- HF implementation: the output of our forward pass in fp16 should be around the same as the HF
- forward pass in fp16, when compared to the HF forward pass in fp32.
- """
- dtype = torch.float16
- device = "cuda"
- config = gptj_config_to_gpt2_config(GPTJConfig.from_pretrained(model_name))
- config.use_flash_attn = True # FlashAttention-2 supports headdim 256
- config.fused_bias_fc = True
- config.fused_mlp = True
- config.fused_dropout_add_ln = True
- config.residual_in_fp32 = True
- model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype)
- model.eval()
- torch.manual_seed(0)
- batch_size = 2
- max_seqlen = 256
- input_ids = torch.randint(
- 0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device
- )
- with torch.no_grad():
- out = model.transformer(input_ids)
- logits = model(input_ids).logits
- del model
- # Without device_map, the model is loaded on the CPU, which is very slow
- model_ref = GPTJForCausalLM.from_pretrained(model_name, device_map={"": device})
- model_ref.eval()
- with torch.no_grad():
- out_ref = model_ref.transformer(input_ids).last_hidden_state
- logits_ref = model_ref(input_ids).logits
- del model_ref
- model_hf = GPTJForCausalLM.from_pretrained(
- model_name, torch_dtype=dtype, device_map={"": device}
- )
- model_hf.eval()
- out_hf = model_hf.transformer(input_ids).last_hidden_state
- logits_hf = model_hf(input_ids).logits
- del model_hf
- print(f"Output max diff: {(out - out_ref).abs().max().item()}")
- print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
- print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}")
- print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}")
- assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item()
- print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}")
- print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}")
- print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}")
- print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}")
- assert (logits - logits_ref).abs().max().item() < 3 * (
- logits_hf - logits_ref
- ).abs().max().item()
- @pytest.mark.parametrize("model_name", ["EleutherAI/gpt-j-6B"])
- def test_gptj_generation(model_name):
- """Check that our implementation of GPT-J (with all optimizations enabled) matches the
- HF implementation: the output of our forward pass in fp16 should be around the same as the HF
- forward pass in fp16, when compared to the HF forward pass in fp32.
- """
- dtype = torch.float16
- device = "cuda"
- config = gptj_config_to_gpt2_config(GPTJConfig.from_pretrained(model_name))
- config.use_flash_attn = True # FlashAttention-2 supports headdim 256
- config.fused_bias_fc = True
- config.fused_mlp = True
- config.fused_dropout_add_ln = True
- # Only prenorm supports residual_in_fp32
- config.residual_in_fp32 = True
- tokenizer = AutoTokenizer.from_pretrained(model_name)
- eos_token_id = tokenizer.eos_token_id
- torch.manual_seed(0)
- batch_size = 1
- seqlen = 100
- max_length = 150
- input_ids = torch.randint(
- 0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device
- )
- model_hf = GPTJForCausalLM.from_pretrained(
- model_name, torch_dtype=dtype, device_map={"": device}
- )
- model_hf.eval()
- print("HF fp16")
- torch.cuda.synchronize()
- start = time.time()
- out_hf = model_hf.generate(
- input_ids=input_ids, max_length=max_length, return_dict_in_generate=True, output_scores=True
- )
- torch.cuda.synchronize()
- print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
- del model_hf
- model_ref = GPTJForCausalLM.from_pretrained(model_name, device_map={"": device})
- model_ref.eval()
- with torch.no_grad():
- logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1) : -1]
- del model_ref
- model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype)
- model.eval()
- print("Without CUDA graph")
- torch.cuda.synchronize()
- start = time.time()
- out = model.generate(
- input_ids=input_ids,
- max_length=max_length,
- eos_token_id=eos_token_id,
- return_dict_in_generate=True,
- output_scores=True,
- enable_timing=True,
- teacher_outputs=out_hf.sequences,
- )
- torch.cuda.synchronize()
- print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
- # Capture graph outside the timing loop
- batch_size, seqlen_og = input_ids.shape
- model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length)
- print("With CUDA graph")
- torch.cuda.synchronize()
- start = time.time()
- out_cg = model.generate(
- input_ids=input_ids,
- max_length=max_length,
- cg=True,
- return_dict_in_generate=True,
- output_scores=True,
- enable_timing=True,
- teacher_outputs=out_hf.sequences,
- )
- torch.cuda.synchronize()
- print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms")
- with torch.no_grad():
- logits_parallel = model(out_hf.sequences).logits[:, (seqlen - 1) : -1]
- logits_hf = torch.stack(out_hf.scores, dim=1)
- logits = torch.stack(out.scores, dim=1)
- logits_cg = torch.stack(out_cg.scores, dim=1)
- del model
- hf_error = (logits_hf - logits_ref).abs().max().item()
- assert (logits_parallel - logits_ref).abs().max().item() < 2 * hf_error
- print(f"HF fp16 logits max diff: {hf_error}")
- print(f"Logits max diff: {(logits - logits_ref).abs().max().item() }")
- assert (logits - logits_ref).abs().max().item() < 2 * hf_error
- print(f"Logits CG max diff: {(logits_cg - logits_ref).abs().max().item() }")
- assert torch.equal(logits_cg, logits)
|