123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384 |
- import time
- import torch
- import pytest
- from transformers import GPTNeoXConfig, AutoTokenizer
- from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM
- from flash_attn.models.gpt import GPTLMHeadModel
- from flash_attn.models.gpt_neox import remap_state_dict_hf_gpt_neox, gpt_neox_config_to_gpt2_config
- from flash_attn.utils.pretrained import state_dict_from_pretrained
- from flash_attn.utils.generation import update_graph_cache
- @pytest.mark.parametrize('model_name', ["EleutherAI/gpt-neox-20b"])
- def test_gptj_state_dict(model_name):
- config = gpt_neox_config_to_gpt2_config(GPTNeoXConfig.from_pretrained(model_name))
- pretrained_state_dict = remap_state_dict_hf_gpt_neox(state_dict_from_pretrained(model_name), config)
- model = GPTLMHeadModel(config, device='meta') # Without device='meta' init is very slow
- state_dict = model.state_dict()
- assert state_dict.keys() == pretrained_state_dict.keys()
- for k in state_dict.keys():
- assert state_dict[k].shape == pretrained_state_dict[k].shape
- @pytest.mark.parametrize('model_name', ["EleutherAI/gpt-neox-20b"])
- def test_gpt_neox_optimized(model_name):
- """Check that our implementation of GPT-NeoX (with all optimizations enabled) matches the
- HF implementation: the output of our forward pass in fp16 should be around the same as the HF
- forward pass in fp16, when compared to the HF forward pass in fp32.
- """
- dtype = torch.float16
- device = 'cuda'
- config = gpt_neox_config_to_gpt2_config(GPTNeoXConfig.from_pretrained(model_name))
- config.use_flash_attn = True
- config.fused_bias_fc = True
- config.fused_mlp = True # GPT-NeoX-20B uses "gelu_fast"
- config.fused_dropout_add_ln = True
- config.residual_in_fp32 = True
- model = GPTLMHeadModel.from_pretrained(model_name, config, device=device, dtype=dtype)
- model.eval()
- torch.manual_seed(0)
- batch_size = 2
- max_seqlen = 256
- seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device)
- input_ids = torch.randint(0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long,
- device=device)
- with torch.no_grad():
- out = model.transformer(input_ids)
- logits = model(input_ids).logits
- del model
- # Need at least 2 GPUs, otherwise we'll OOM
- # Without device_map, the model is loaded on the CPU, which is very slow
- model_ref = GPTNeoXForCausalLM.from_pretrained(model_name, device_map='auto')
- model_ref.eval()
- with torch.no_grad():
- out_ref = model_ref.gpt_neox(input_ids).last_hidden_state.to(device=device)
- logits_ref = model_ref(input_ids).logits.to(device=device)
- del model_ref
- model_hf = GPTNeoXForCausalLM.from_pretrained(model_name, torch_dtype=dtype,
- device_map={"": device})
- model_hf.eval()
- with torch.no_grad():
- out_hf = model_hf.gpt_neox(input_ids).last_hidden_state
- logits_hf = model_hf(input_ids).logits
- del model_hf
- print(f'Output max diff: {(out - out_ref).abs().max().item()}')
- print(f'Output mean diff: {(out - out_ref).abs().mean().item()}')
- print(f'HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}')
- print(f'HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}')
- assert (out - out_ref).abs().max().item() < 2 * (out_hf - out_ref).abs().max().item()
- assert (out - out_ref).abs().mean().item() < 2 * (out_hf - out_ref).abs().mean().item()
- print(f'Logits max diff: {(logits - logits_ref).abs().max().item()}')
- print(f'Logits mean diff: {(logits - logits_ref).abs().mean().item()}')
- print(f'HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}')
- print(f'HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}')
- assert (logits - logits_ref).abs().max().item() < 2 * (logits_hf - logits_ref).abs().max().item()
- assert (logits - logits_ref).abs().mean().item() < 2 * (logits_hf - logits_ref).abs().mean().item()
|