123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273 |
- # Run test with:
- # torchrun --no_python --nproc_per_node=8 pytest -q -s tests/modules/test_block_parallel.py
- import math
- from functools import partial
- import pytest
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from apex.transformer import parallel_state, tensor_parallel
- from einops import rearrange
- from flash_attn.modules.block import Block
- from flash_attn.modules.mha import MHA, ParallelMHA
- from flash_attn.modules.mlp import FusedMLP, ParallelFusedMLP
- from flash_attn.utils.distributed import allreduce_sequence_parallel_grad
- is_sm8x = torch.cuda.get_device_capability("cuda")[0] >= 8
- @pytest.mark.parametrize("dtype", [torch.float16] + ([torch.bfloat16] if is_sm8x else []))
- # @pytest.mark.parametrize('dtype', [torch.float16])
- @pytest.mark.parametrize("world_size", [1, 2, 4, 8])
- # @pytest.mark.parametrize('world_size', [2])
- @pytest.mark.parametrize("sequence_parallel", [True, False])
- # @pytest.mark.parametrize('sequence_parallel', [True])
- @pytest.mark.parametrize("dim", [1024])
- def test_block_parallel(dim, sequence_parallel, world_size, dtype):
- head_dim = 64
- assert dim % head_dim == 0
- num_heads = dim // head_dim
- assert num_heads % world_size == 0
- rtol, atol = (3e-3, 5e-2) if dtype == torch.bfloat16 else (3e-3, 3e-3)
- if not torch.distributed.is_initialized():
- torch.distributed.init_process_group(backend="nccl", init_method="env://")
- device = f"cuda:{torch.distributed.get_rank()}"
- assert world_size <= torch.distributed.get_world_size()
- parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size)
- rank = parallel_state.get_tensor_model_parallel_rank()
- # set seed
- torch.random.manual_seed(0)
- batch_size = 2
- seqlen = 1024
- assert (batch_size * seqlen) % world_size == 0
- x_pt = torch.randn(batch_size * seqlen, dim, device=device, dtype=dtype, requires_grad=True)
- residual_pt = torch.randn(batch_size * seqlen, dim, device=device, requires_grad=True)
- # We need to generate g here so that all processes get the same gradient,
- # as rank 0 will have an extra bias that changes the RNG.
- # If we don't divide by batch_size, the gradient gets a bit too large.
- g = torch.randn_like(x_pt) / 32
- if sequence_parallel:
- x = (
- tensor_parallel.scatter_to_sequence_parallel_region(x_pt)
- .detach()
- .clone()
- .requires_grad_()
- )
- residual = (
- tensor_parallel.scatter_to_sequence_parallel_region(residual_pt)
- .detach()
- .clone()
- .requires_grad_()
- )
- else:
- x = x_pt.detach().clone().requires_grad_()
- residual = residual_pt.detach().clone().requires_grad_()
- mixer_cls_pt = partial(
- MHA,
- num_heads=num_heads,
- rotary_emb_dim=int(head_dim // 2),
- use_flash_attn=True,
- device=device,
- dtype=dtype,
- )
- mlp_cls_pt = partial(FusedMLP, hidden_features=4 * dim, device=device, dtype=dtype)
- norm_cls = partial(nn.LayerNorm, device=device, dtype=dtype)
- model_pt = Block(dim, mixer_cls_pt, mlp_cls_pt, norm_cls, fused_dropout_add_ln=True)
- with torch.no_grad():
- nn.init.normal_(model_pt.norm1.weight)
- nn.init.normal_(model_pt.norm1.bias)
- nn.init.normal_(model_pt.norm2.weight)
- nn.init.normal_(model_pt.norm2.bias)
- mixer_cls = partial(
- ParallelMHA,
- num_heads=num_heads,
- process_group=parallel_state.get_tensor_model_parallel_group(),
- rotary_emb_dim=int(head_dim // 2),
- use_flash_attn=True,
- sequence_parallel=sequence_parallel,
- device=device,
- dtype=dtype,
- )
- mlp_cls = partial(
- ParallelFusedMLP,
- hidden_features=4 * dim,
- process_group=parallel_state.get_tensor_model_parallel_group(),
- sequence_parallel=sequence_parallel,
- device=device,
- dtype=dtype,
- )
- model = Block(
- dim,
- mixer_cls,
- mlp_cls,
- norm_cls,
- fused_dropout_add_ln=True,
- sequence_parallel=sequence_parallel,
- mark_shared_params=True,
- )
- partition_dim = dim // world_size
- partition_hidden_dim = 4 * dim // world_size
- with torch.no_grad():
- model.mixer.Wqkv.weight.copy_(
- rearrange(
- rearrange(model_pt.mixer.Wqkv.weight, "(three o) i -> three o i", three=3)[
- :, rank * partition_dim : (rank + 1) * partition_dim
- ],
- "three o i -> (three o) i",
- )
- )
- model.mixer.Wqkv.bias.copy_(
- rearrange(
- rearrange(model_pt.mixer.Wqkv.bias, "(three o) -> three o", three=3)[
- :, rank * partition_dim : (rank + 1) * partition_dim
- ],
- "three o -> (three o)",
- )
- )
- model.mixer.out_proj.weight.copy_(
- model_pt.mixer.out_proj.weight[:, rank * partition_dim : (rank + 1) * partition_dim]
- )
- if rank == 0:
- model.mixer.out_proj.bias.copy_(model_pt.mixer.out_proj.bias)
- model.mlp.fc1.weight.copy_(
- model_pt.mlp.fc1.weight[rank * partition_hidden_dim : (rank + 1) * partition_hidden_dim]
- )
- model.mlp.fc1.bias.copy_(
- model_pt.mlp.fc1.bias[rank * partition_hidden_dim : (rank + 1) * partition_hidden_dim]
- )
- model.mlp.fc2.weight.copy_(
- model_pt.mlp.fc2.weight[
- :, rank * partition_hidden_dim : (rank + 1) * partition_hidden_dim
- ]
- )
- if rank == 0:
- model.mlp.fc2.bias.copy_(model_pt.mlp.fc2.bias)
- model.norm1.weight.copy_(model_pt.norm1.weight)
- model.norm1.bias.copy_(model_pt.norm1.bias)
- model.norm2.weight.copy_(model_pt.norm2.weight)
- model.norm2.bias.copy_(model_pt.norm2.bias)
- mixer_kwargs = {"seqlen": seqlen}
- out, out_residual = model(x, residual, mixer_kwargs=mixer_kwargs)
- out_pt, out_residual_pt = model_pt(
- rearrange(x_pt, "(b s) d -> b s d", s=seqlen),
- rearrange(residual_pt, "(b s) d -> b s d", s=seqlen),
- )
- out_pt, out_residual_pt = [rearrange(x, "b s d -> (b s) d") for x in [out_pt, out_residual_pt]]
- partition_batch_dim = batch_size * seqlen // world_size
- assert torch.allclose(
- out,
- out_pt[rank * partition_batch_dim : (rank + 1) * partition_batch_dim]
- if sequence_parallel
- else out_pt,
- rtol=rtol,
- atol=atol,
- )
- assert torch.allclose(
- out_residual,
- out_residual_pt[rank * partition_batch_dim : (rank + 1) * partition_batch_dim]
- if sequence_parallel
- else out_residual_pt,
- rtol=rtol,
- atol=atol,
- )
- (out_pt + 2 * out_residual_pt).backward(g)
- (out + 2 * out_residual).backward(
- g[rank * partition_batch_dim : (rank + 1) * partition_batch_dim] if sequence_parallel else g
- )
- allreduce_sequence_parallel_grad(model, parallel_state.get_tensor_model_parallel_group())
- parallel_state.destroy_model_parallel()
- assert torch.allclose(
- x.grad,
- x_pt.grad[rank * partition_batch_dim : (rank + 1) * partition_batch_dim]
- if sequence_parallel
- else x_pt.grad,
- rtol=rtol,
- atol=atol / 10, # magnitude of x.grad is quite small
- )
- assert torch.allclose(
- residual.grad,
- residual_pt.grad[rank * partition_batch_dim : (rank + 1) * partition_batch_dim]
- if sequence_parallel
- else residual_pt.grad,
- rtol=rtol,
- atol=atol,
- )
- # The error for d_weight and d_bias is quite a bit higher
- assert torch.allclose(
- model.mixer.Wqkv.weight.grad,
- rearrange(
- rearrange(model_pt.mixer.Wqkv.weight.grad, "(three o) i -> three o i", three=3)[
- :, rank * partition_dim : (rank + 1) * partition_dim
- ],
- "three o i -> (three o) i",
- ),
- rtol=rtol,
- atol=atol * 10,
- )
- assert torch.allclose(
- model.mixer.Wqkv.bias.grad,
- rearrange(
- rearrange(model_pt.mixer.Wqkv.bias.grad, "(three o) -> three o", three=3)[
- :, rank * partition_dim : (rank + 1) * partition_dim
- ],
- "three o -> (three o)",
- ),
- rtol=rtol,
- atol=atol * 5,
- )
- assert torch.allclose(
- model.mixer.out_proj.weight.grad,
- model_pt.mixer.out_proj.weight.grad[:, rank * partition_dim : (rank + 1) * partition_dim],
- rtol=rtol,
- atol=atol * 10,
- )
- if rank == 0:
- assert torch.allclose(
- model.mixer.out_proj.bias.grad,
- model_pt.mixer.out_proj.bias.grad,
- rtol=rtol,
- atol=atol * 5,
- )
- assert torch.allclose(
- model.mlp.fc1.weight.grad,
- model_pt.mlp.fc1.weight.grad[
- rank * partition_hidden_dim : (rank + 1) * partition_hidden_dim
- ],
- rtol=rtol,
- atol=atol * 10,
- )
- assert torch.allclose(
- model.mlp.fc1.bias.grad,
- model_pt.mlp.fc1.bias.grad[rank * partition_hidden_dim : (rank + 1) * partition_hidden_dim],
- rtol=rtol,
- atol=atol * 5,
- )
- assert torch.allclose(
- model.mlp.fc2.weight.grad,
- model_pt.mlp.fc2.weight.grad[
- :, rank * partition_hidden_dim : (rank + 1) * partition_hidden_dim
- ],
- rtol=rtol,
- atol=atol * 10,
- )
- if rank == 0:
- assert torch.allclose(
- model.mlp.fc2.bias.grad, model_pt.mlp.fc2.bias.grad, rtol=rtol, atol=atol * 5
- )
- assert torch.allclose(
- model.norm1.weight.grad, model_pt.norm1.weight.grad, rtol=rtol, atol=atol * 5
- )
- assert torch.allclose(model.norm1.bias.grad, model_pt.norm1.bias.grad, rtol=rtol, atol=atol * 5)
- assert torch.allclose(
- model.norm2.weight.grad, model_pt.norm2.weight.grad, rtol=rtol, atol=atol * 5
- )
- assert torch.allclose(model.norm2.bias.grad, model_pt.norm2.bias.grad, rtol=rtol, atol=atol * 5)
|