1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078 |
- /******************************************************************************
- * Copyright (c) 2024, Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, Tri Dao.
- ******************************************************************************/
- // Include these 2 headers instead of torch/extension.h since we don't need all of the torch headers.
- #include <torch/python.h>
- #include <torch/nn/functional.h>
- #include <ATen/cuda/CUDAContext.h>
- #include <c10/cuda/CUDAGuard.h>
- #include <cutlass/numeric_types.h>
- #include "flash.h"
- #include "static_switch.h"
- #define CHECK_DEVICE(x) TORCH_CHECK(x.is_cuda(), #x " must be on CUDA")
- #define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
- #define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
- void set_params_fprop(Flash_fwd_params ¶ms,
- // sizes
- const size_t b,
- const size_t seqlen_q,
- const size_t seqlen_k,
- const size_t seqlen_q_rounded,
- const size_t seqlen_k_rounded,
- const size_t h,
- const size_t h_k,
- const size_t d,
- const size_t d_rounded,
- // device pointers
- const at::Tensor q,
- const at::Tensor k,
- const at::Tensor v,
- at::Tensor out,
- void *cu_seqlens_q_d,
- void *cu_seqlens_k_d,
- void *seqused_q,
- void *seqused_k,
- void *p_d,
- void *softmax_lse_d,
- float p_dropout,
- float softmax_scale,
- int window_size_left,
- int window_size_right,
- const float softcap=0.f,
- bool seqlenq_ngroups_swapped=false) {
- // Reset the parameters
- params = {};
- params.is_bf16 = q.dtype() == torch::kBFloat16;
- params.is_e4m3 = q.dtype() == torch::kFloat8_e4m3fn;
- // Set the pointers and strides.
- params.q_ptr = q.data_ptr();
- params.k_ptr = k.data_ptr();
- params.v_ptr = v.data_ptr();
- // All stride are in elements, not bytes.
- params.q_row_stride = q.stride(-3);
- params.k_row_stride = k.stride(-3);
- params.v_row_stride = v.stride(-3);
- params.q_head_stride = q.stride(-2);
- params.k_head_stride = k.stride(-2);
- params.v_head_stride = v.stride(-2);
- params.v_dim_stride = v.stride(-1);
- params.o_ptr = out.data_ptr();
- params.o_row_stride = out.stride(-3);
- params.o_head_stride = out.stride(-2);
- if (cu_seqlens_q_d == nullptr) {
- params.q_batch_stride = q.stride(0);
- params.k_batch_stride = k.stride(0);
- params.v_batch_stride = v.stride(0);
- params.o_batch_stride = out.stride(0);
- if (seqlenq_ngroups_swapped) {
- params.q_batch_stride *= seqlen_q;
- params.o_batch_stride *= seqlen_q;
- }
- }
- params.cu_seqlens_q = static_cast<int *>(cu_seqlens_q_d);
- params.cu_seqlens_k = static_cast<int *>(cu_seqlens_k_d);
- params.seqused_q = static_cast<int *>(seqused_q);
- params.seqused_k = static_cast<int *>(seqused_k);
- // P = softmax(QK^T)
- params.p_ptr = p_d;
- // Softmax sum
- params.softmax_lse_ptr = softmax_lse_d;
- // Set the dimensions.
- params.b = b;
- params.h = h;
- params.h_k = h_k;
- params.h_h_k_ratio = h / h_k;
- params.seqlen_q = seqlen_q;
- params.seqlen_k = seqlen_k;
- params.seqlen_q_rounded = seqlen_q_rounded;
- params.seqlen_k_rounded = seqlen_k_rounded;
- params.d = d;
- params.d_rounded = d_rounded;
- // Set the different scale values.
- params.scale_softmax = softmax_scale;
- params.scale_softmax_log2 = softmax_scale * M_LOG2E;
- __half scale_softmax_log2_half = __float2half(params.scale_softmax_log2);
- __half2 scale_softmax_log2_half2 = __half2(scale_softmax_log2_half, scale_softmax_log2_half);
- params.scale_softmax_log2_half2 = reinterpret_cast<uint32_t&>(scale_softmax_log2_half2);
- params.softcap = softcap;
- // Set this to probability of keeping an element to simplify things.
- params.p_dropout = 1.f - p_dropout;
- // Convert p from float to int so we don't have to convert the random uint to float to compare.
- // [Minor] We want to round down since when we do the comparison we use <= instead of <
- // params.p_dropout_in_uint = uint32_t(std::floor(params.p_dropout * 4294967295.0));
- // params.p_dropout_in_uint16_t = uint16_t(std::floor(params.p_dropout * 65535.0));
- params.p_dropout_in_uint8_t = uint8_t(std::floor(params.p_dropout * 255.0));
- params.rp_dropout = 1.f / params.p_dropout;
- params.scale_softmax_rp_dropout = params.rp_dropout * params.scale_softmax;
- TORCH_CHECK(p_dropout < 1.f);
- #ifdef FLASHATTENTION_DISABLE_DROPOUT
- TORCH_CHECK(p_dropout == 0.0f, "This flash attention build does not support dropout.");
- #endif
- // Causal is the special case where window_size_right == 0 and window_size_left < 0.
- // Local is the more general case where window_size_right >= 0 or window_size_left >= 0.
- params.is_causal = window_size_left < 0 && window_size_right == 0;
- params.is_local = (window_size_left >= 0 || window_size_right >= 0) && !params.is_causal;
- // TODO: check this
- if (window_size_left < 0 && window_size_right >= 0) { window_size_left = seqlen_k - 1; }
- if (window_size_left >= 0 && window_size_right < 0) { window_size_right = seqlen_q - 1; }
- params.window_size_left = window_size_left;
- params.window_size_right = window_size_right;
- #ifdef FLASHATTENTION_DISABLE_LOCAL
- TORCH_CHECK(params.is_causal || (window_size_left < 0 && window_size_right < 0),
- "This flash attention build does not support local attention.");
- #endif
- params.is_seqlens_k_cumulative = true;
- }
- void set_params_dgrad(Flash_bwd_params ¶ms,
- // sizes
- const size_t b,
- const size_t seqlen_q,
- const size_t seqlen_k,
- const size_t seqlen_q_rounded,
- const size_t seqlen_k_rounded,
- const size_t h,
- const size_t h_k,
- const size_t d,
- const size_t d_rounded,
- // device pointers
- const at::Tensor q,
- const at::Tensor k,
- const at::Tensor v,
- const at::Tensor out,
- const at::Tensor dout,
- at::Tensor dq,
- at::Tensor dk,
- at::Tensor dv,
- void *cu_seqlens_q_d,
- void *cu_seqlens_k_d,
- void *seqused_q,
- void *seqused_k,
- void *dq_accum_d,
- void *dk_accum_d,
- void *dv_accum_d,
- void *softmax_lse_d,
- void *dsoftmax_sum_d,
- float p_dropout,
- float softmax_scale,
- int window_size_left,
- int window_size_right,
- const float softcap=0.f,
- bool deterministic=false) {
- set_params_fprop(params,
- b, seqlen_q, seqlen_k, seqlen_q_rounded, seqlen_k_rounded, h, h_k, d, d_rounded,
- q, k, v, out,
- cu_seqlens_q_d,
- cu_seqlens_k_d,
- seqused_q,
- seqused_k,
- nullptr,
- softmax_lse_d,
- p_dropout,
- softmax_scale,
- window_size_left,
- window_size_right,
- softcap);
- // Set the pointers and strides.
- params.do_ptr = dout.data_ptr();
- params.do_row_stride = dout.stride(-3);
- params.do_head_stride = dout.stride(-2);
- params.dq_ptr = dq.data_ptr();
- params.dk_ptr = dk.data_ptr();
- params.dv_ptr = dv.data_ptr();
- params.dq_row_stride = dq.stride(-3);
- params.dk_row_stride = dk.stride(-3);
- params.dv_row_stride = dv.stride(-3);
- params.dq_head_stride = dq.stride(-2);
- params.dk_head_stride = dk.stride(-2);
- params.dv_head_stride = dv.stride(-2);
- if (cu_seqlens_q_d == nullptr) {
- params.do_batch_stride = dout.stride(0);
- params.dq_batch_stride = dq.stride(0);
- params.dk_batch_stride = dk.stride(0);
- params.dv_batch_stride = dv.stride(0);
- }
- params.dq_accum_ptr = dq_accum_d;
- params.dk_accum_ptr = dk_accum_d;
- params.dv_accum_ptr = dv_accum_d;
- // Softmax sum
- params.dsoftmax_sum = dsoftmax_sum_d;
- params.deterministic = deterministic;
- }
- void run_mha_fwd(Flash_fwd_params ¶ms, cudaStream_t stream, bool force_split_kernel=false) {
- // HEADDIM_SWITCH(params.d, [&] {
- // run_mha_fwd_<cutlass::half_t, kHeadSize>(params, stream);
- // });
- if (!params.is_e4m3) {
- if (params.is_bf16) {
- if (params.d <= 64) {
- run_mha_fwd_<cutlass::bfloat16_t, 64>(params, stream);
- } else if (params.d <= 96) {
- run_mha_fwd_<cutlass::bfloat16_t, 96>(params, stream);
- } else if (params.d <= 128) {
- run_mha_fwd_<cutlass::bfloat16_t, 128>(params, stream);
- } else if (params.d <= 192) {
- run_mha_fwd_<cutlass::bfloat16_t, 192>(params, stream);
- } else {
- run_mha_fwd_<cutlass::bfloat16_t, 256>(params, stream);
- }
- } else {
- if (params.d <= 64) {
- run_mha_fwd_<cutlass::half_t, 64>(params, stream);
- } else if (params.d <= 96) {
- run_mha_fwd_<cutlass::half_t, 96>(params, stream);
- } else if (params.d <= 128) {
- run_mha_fwd_<cutlass::half_t, 128>(params, stream);
- } else if (params.d <= 192) {
- run_mha_fwd_<cutlass::half_t, 192>(params, stream);
- } else {
- run_mha_fwd_<cutlass::half_t, 256>(params, stream);
- }
- }
- } else {
- if (params.d <= 64) {
- run_mha_fwd_<cutlass::float_e4m3_t, 64>(params, stream);
- } else if (params.d <= 96) {
- run_mha_fwd_<cutlass::float_e4m3_t, 96>(params, stream);
- } else if (params.d <= 128) {
- run_mha_fwd_<cutlass::float_e4m3_t, 128>(params, stream);
- } else if (params.d <= 192) {
- run_mha_fwd_<cutlass::float_e4m3_t, 192>(params, stream);
- } else {
- run_mha_fwd_<cutlass::float_e4m3_t, 256>(params, stream);
- }
- }
- }
- std::vector<at::Tensor>
- mha_fwd(at::Tensor &q, // batch_size x seqlen_q x num_heads x head_size
- const at::Tensor &k, // batch_size x seqlen_k x num_heads_k x head_size
- const at::Tensor &v, // batch_size x seqlen_k x num_heads_k x head_size
- c10::optional<at::Tensor> &out_, // batch_size x seqlen_q x num_heads x head_size
- const float softmax_scale,
- bool is_causal,
- c10::optional<at::Tensor> &q_scale_, // 1
- c10::optional<at::Tensor> &k_scale_, // 1
- c10::optional<at::Tensor> &v_scale_, // 1
- int window_size_left,
- int window_size_right,
- const float softcap
- ) {
- auto dprops = at::cuda::getCurrentDeviceProperties();
- bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
- TORCH_CHECK(is_sm90, "FlashAttention only supports Hopper GPUs or newer.");
- auto q_type = q.scalar_type();
- TORCH_CHECK(q_type == at::ScalarType::Half || q_type == at::ScalarType::BFloat16 || q_type == at::ScalarType::Float8_e4m3fn,
- "FlashAttention only support fp16, bf16, and fp8_e4m3 data type");
- TORCH_CHECK(k.scalar_type() == q_type, "query and key must have the same dtype");
- TORCH_CHECK(v.scalar_type() == q_type, "query and value must have the same dtype");
- CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
- TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
- TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
- TORCH_CHECK(v.stride(-1) == 1 || v.stride(-3) == 1, "Input tensor V must have contiguous last dimension or contiguous seqlen dimension");
- if (v.stride(-1) != 1) {
- TORCH_CHECK(q_type == at::ScalarType::Float8_e4m3fn, "Only fp8_e4m3 data type supports input tensor V having contiguous seqlen dimension")
- }
- const auto sizes = q.sizes();
- const int batch_size = sizes[0];
- int seqlen_q = sizes[1];
- int num_heads = sizes[2];
- const int head_size_og = sizes[3];
- const int seqlen_k = k.size(1);
- const int num_heads_k = k.size(2);
- TORCH_CHECK(head_size_og <= 256, "FlashAttention forward only supports head dimension at most 256");
- TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
- if (softcap > 0.0) { TORCH_CHECK(q_type != at::ScalarType::Float8_e4m3fn, "Softcap is not yet supported for fp8_e4m3 data type"); }
- // TODO: check this
- if (window_size_left >= seqlen_k - 1) { window_size_left = -1; }
- if (window_size_right >= seqlen_q - 1) { window_size_right = -1; }
- if (is_causal) {
- window_size_left = -1;
- window_size_right = 0;
- }
- CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size_og);
- CHECK_SHAPE(k, batch_size, seqlen_k, num_heads_k, head_size_og);
- CHECK_SHAPE(v, batch_size, seqlen_k, num_heads_k, head_size_og);
- int const alignment = q_type == torch::kFloat8_e4m3fn ? 16 : 8;
- at::Tensor q_padded, k_padded, v_padded;
- auto pad = [](at::Tensor x, int alignment) {
- return x.size(-1) % alignment == 0 ? x : torch::nn::functional::pad(x, torch::nn::functional::PadFuncOptions({0, alignment - x.size(-1) % alignment}));
- };
- q_padded = pad(q, alignment);
- k_padded = pad(k, alignment);
- v_padded = pad(v, alignment);
- if (v_padded.stride(-1) != 1) {
- TORCH_CHECK(v_padded.stride(-1) % 16 == 0 && v_padded.stride(-2) % 16 == 0 && v_padded.stride(-4) % 16 == 0,
- "If input tensor V has contiguous seqlen dimension, the others dimension must have stride divisible by 16");
- }
- auto opts = q.options();
- auto out_type = q_type == at::ScalarType::Float8_e4m3fn ? at::ScalarType::BFloat16 : q_type;
- at::Tensor out;
- if (out_.has_value()) {
- out = out_.value();
- TORCH_CHECK(out.scalar_type() == out_type, "For FP16/BF16 input, output must have the same dtype as inputs. For FP8 input, output must have dtype BF16");
- CHECK_DEVICE(out);
- TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension");
- CHECK_SHAPE(out, batch_size, seqlen_q, num_heads, head_size_og);
- if (head_size_og % alignment != 0) { out = torch::empty_like(q_padded, opts.dtype(out_type)); }
- } else {
- out = torch::empty_like(q_padded, opts.dtype(out_type));
- }
- auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
- const int head_size = round_multiple(head_size_og, alignment);
- const int head_size_rounded = head_size <= 64 ? 64 : (head_size <= 128 ? round_multiple(head_size, 32) : round_multiple(head_size, 64));
- const int seqlen_q_rounded = round_multiple(seqlen_q, 128);
- const int seqlen_k_rounded = round_multiple(seqlen_k, 128);
- // Otherwise the kernel will be launched from cuda:0 device
- // Cast to char to avoid compiler warning about narrowing
- at::cuda::CUDAGuard device_guard{(char)q.get_device()};
- auto softmax_lse = torch::empty({batch_size, num_heads, seqlen_q}, opts.dtype(at::kFloat));
- Flash_fwd_params params;
- set_params_fprop(params,
- batch_size,
- seqlen_q, seqlen_k,
- seqlen_q_rounded, seqlen_k_rounded,
- num_heads, num_heads_k,
- head_size, head_size_rounded,
- q_padded, k_padded, v_padded, out,
- /*cu_seqlens_q_d=*/nullptr,
- /*cu_seqlens_k_d=*/nullptr,
- /*seqused_q_=*/nullptr,
- /*seqused_k=*/nullptr,
- nullptr,
- softmax_lse.data_ptr(),
- /*p_dropout=*/0.f,
- softmax_scale,
- window_size_left,
- window_size_right,
- softcap);
- auto tile_count_semaphore = (params.is_causal || params.is_local) ? torch::zeros({1}, opts.dtype(torch::kInt32)) : torch::empty({1}, opts.dtype(torch::kInt32));
- params.tile_count_semaphore = tile_count_semaphore.data_ptr<int>();
- if (q_type == at::ScalarType::Float8_e4m3fn) {
- if (q_scale_.has_value()) {
- auto q_scale = q_scale_.value();
- CHECK_DEVICE(q_scale);
- CHECK_SHAPE(q_scale, 1);
- params.q_scale_ptr = q_scale.data_ptr<float>();
- } else {
- params.q_scale_ptr = nullptr;
- }
- if (k_scale_.has_value()) {
- auto k_scale = k_scale_.value();
- CHECK_DEVICE(k_scale);
- CHECK_SHAPE(k_scale, 1);
- params.k_scale_ptr = k_scale.data_ptr<float>();
- } else {
- params.k_scale_ptr = nullptr;
- }
- if (v_scale_.has_value()) {
- auto v_scale = v_scale_.value();
- CHECK_DEVICE(v_scale);
- CHECK_SHAPE(v_scale, 1);
- params.v_scale_ptr = v_scale.data_ptr<float>();
- } else {
- params.v_scale_ptr = nullptr;
- }
- }
- if (seqlen_k > 0 && batch_size > 0) {
- auto stream = at::cuda::getCurrentCUDAStream().stream();
- run_mha_fwd(params, stream);
- } else if (batch_size > 0) {
- // If seqlen_k == 0, then we have an empty tensor. We need to set the output to 0.
- out.zero_();
- softmax_lse.fill_(std::numeric_limits<float>::infinity());
- }
- at::Tensor out_padded = out;
- if (head_size_og % alignment != 0) {
- out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
- if (out_.has_value()) { out_.value().copy_(out); }
- }
- return {out, q_padded, k_padded, v_padded, out_padded, softmax_lse};
- }
- std::vector<at::Tensor>
- mha_varlen_fwd(at::Tensor &q, // batch_size x seqlen_q x num_heads x head_size
- const at::Tensor &k, // batch_size x seqlen_k x num_heads_k x head_size
- const at::Tensor &v, // batch_size x seqlen_k x num_heads_k x head_size
- c10::optional<at::Tensor> &out_, // batch_size x seqlen_q x num_heads x head_size
- const at::Tensor &cu_seqlens_q, // b+1
- const at::Tensor &cu_seqlens_k, // b+1
- c10::optional<at::Tensor> &seqused_q_, // b. If given, only this many elements of each batch element's queries and outputs are used.
- c10::optional<at::Tensor> &seqused_k_, // b. If given, only this many elements of each batch element's keys are used.
- int const max_seqlen_q,
- int const max_seqlen_k,
- const float softmax_scale,
- bool is_causal,
- c10::optional<at::Tensor> &q_scale_, // 1
- c10::optional<at::Tensor> &k_scale_, // 1
- c10::optional<at::Tensor> &v_scale_, // 1
- int window_size_left,
- int window_size_right,
- const float softcap
- ) {
- auto dprops = at::cuda::getCurrentDeviceProperties();
- bool is_sm90 = dprops->major == 9 && dprops->minor == 0;
- TORCH_CHECK(is_sm90, "FlashAttention only supports Hopper GPUs or newer.");
- auto q_type = q.scalar_type();
- TORCH_CHECK(q_type == at::ScalarType::Half || q_type == at::ScalarType::BFloat16 || q_type == at::ScalarType::Float8_e4m3fn,
- "FlashAttention only support fp16, bf16, and fp8_e4m3 data type");
- TORCH_CHECK(k.scalar_type() == q_type, "query and key must have the same dtype");
- TORCH_CHECK(v.scalar_type() == q_type, "query and value must have the same dtype");
- CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
- CHECK_DEVICE(cu_seqlens_q); CHECK_DEVICE(cu_seqlens_k);
- TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
- TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
- TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
- TORCH_CHECK(cu_seqlens_q.stride(-1) == 1, "cu_seqlens_q must have contiguous last dimension");
- TORCH_CHECK(cu_seqlens_k.stride(-1) == 1, "cu_seqlens_q must have contiguous last dimension");
- const auto sizes = q.sizes();
- const int batch_size = cu_seqlens_q.numel() - 1;
- int num_heads = sizes[1];
- const int head_size_og = sizes[2];
- const int num_heads_k = k.size(1);
- const int total_q = q.sizes()[0];
- const int total_k = k.sizes()[0];
- TORCH_CHECK(head_size_og <= 256, "FlashAttention forward only supports head dimension at most 256");
- TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
- if (softcap > 0.0) { TORCH_CHECK(q_type != at::ScalarType::Float8_e4m3fn, "Softcap is not yet supported for fp8_e4m3 data type"); }
- if (window_size_left >= max_seqlen_k - 1) { window_size_left = -1; }
- if (window_size_right >= max_seqlen_q - 1) { window_size_right = -1; }
- if (is_causal) {
- window_size_left = -1;
- window_size_right = 0;
- }
- CHECK_SHAPE(q, total_q, num_heads, head_size_og);
- CHECK_SHAPE(k, total_k, num_heads_k, head_size_og);
- CHECK_SHAPE(v, total_k, num_heads_k, head_size_og);
- CHECK_SHAPE(cu_seqlens_q, batch_size + 1);
- CHECK_SHAPE(cu_seqlens_k, batch_size + 1);
- if (seqused_q_.has_value()){
- auto seqused_q = seqused_q_.value();
- TORCH_CHECK(seqused_q.dtype() == torch::kInt32, "seqused_q must have dtype int32");
- TORCH_CHECK(seqused_q.is_cuda(), "seqused_q must be on CUDA device");
- TORCH_CHECK(seqused_q.is_contiguous(), "seqused_q must be contiguous");
- CHECK_SHAPE(seqused_q, batch_size);
- }
- if (seqused_k_.has_value()){
- auto seqused_k = seqused_k_.value();
- TORCH_CHECK(seqused_k.dtype() == torch::kInt32, "seqused_k must have dtype int32");
- TORCH_CHECK(seqused_k.is_cuda(), "seqused_k must be on CUDA device");
- TORCH_CHECK(seqused_k.is_contiguous(), "seqused_k must be contiguous");
- CHECK_SHAPE(seqused_k, batch_size);
- }
- int const alignment = q_type == torch::kFloat8_e4m3fn ? 16 : 8;
- at::Tensor q_padded, k_padded, v_padded;
- auto pad = [](at::Tensor x, int alignment) {
- return x.size(-1) % alignment == 0 ? x : torch::nn::functional::pad(x, torch::nn::functional::PadFuncOptions({0, alignment - x.size(-1) % alignment}));
- };
- q_padded = pad(q, alignment);
- k_padded = pad(k, alignment);
- v_padded = pad(v, alignment);
- auto opts = q.options();
- auto out_type = q_type == at::ScalarType::Float8_e4m3fn ? at::ScalarType::BFloat16 : q_type;
- at::Tensor out;
- if (out_.has_value()) {
- out = out_.value();
- TORCH_CHECK(out.scalar_type() == out_type, "For FP16/BF16 input, output must have the same dtype as inputs. For FP8 input, output must have dtype BF16");
- CHECK_DEVICE(out);
- TORCH_CHECK(out.stride(-1) == 1, "Output tensor must have contiguous last dimension");
- CHECK_SHAPE(out, total_q, num_heads, head_size_og);
- if (head_size_og % alignment != 0) { out = torch::empty_like(q_padded, opts.dtype(out_type)); }
- } else {
- out = torch::empty_like(q_padded, opts.dtype(out_type));
- }
- auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
- const int head_size = round_multiple(head_size_og, alignment);
- const int head_size_rounded = head_size <= 64 ? 64 : (head_size <= 128 ? round_multiple(head_size, 32) : round_multiple(head_size, 64));
- const int seqlen_q_rounded = round_multiple(max_seqlen_q, 128);
- const int seqlen_k_rounded = round_multiple(max_seqlen_k, 128);
- // Otherwise the kernel will be launched from cuda:0 device
- // Cast to char to avoid compiler warning about narrowing
- at::cuda::CUDAGuard device_guard{(char)q.get_device()};
- auto softmax_lse = torch::empty({num_heads, total_q}, opts.dtype(at::kFloat));
- Flash_fwd_params params;
- set_params_fprop(params,
- batch_size,
- max_seqlen_q, max_seqlen_k,
- seqlen_q_rounded, seqlen_k_rounded,
- num_heads, num_heads_k,
- head_size, head_size_rounded,
- q_padded, k_padded, v_padded, out,
- cu_seqlens_q.data_ptr(),
- cu_seqlens_k.data_ptr(),
- seqused_q_.has_value() ? seqused_q_.value().data_ptr() : nullptr,
- seqused_k_.has_value() ? seqused_k_.value().data_ptr() : nullptr,
- nullptr,
- softmax_lse.data_ptr(),
- /*p_dropout=*/0.f,
- softmax_scale,
- window_size_left,
- window_size_right,
- softcap);
- params.total_q = total_q;
- params.total_k = total_k;
- auto tile_count_semaphore = torch::zeros({1}, opts.dtype(torch::kInt32));
- params.tile_count_semaphore = tile_count_semaphore.data_ptr<int>();
- if (q_type == at::ScalarType::Float8_e4m3fn) {
- if (q_scale_.has_value()) {
- auto q_scale = q_scale_.value();
- CHECK_DEVICE(q_scale);
- CHECK_SHAPE(q_scale, 1);
- params.q_scale_ptr = q_scale.data_ptr<float>();
- } else {
- params.q_scale_ptr = nullptr;
- }
- if (k_scale_.has_value()) {
- auto k_scale = k_scale_.value();
- CHECK_DEVICE(k_scale);
- CHECK_SHAPE(k_scale, 1);
- params.k_scale_ptr = k_scale.data_ptr<float>();
- } else {
- params.k_scale_ptr = nullptr;
- }
- if (v_scale_.has_value()) {
- auto v_scale = v_scale_.value();
- CHECK_DEVICE(v_scale);
- CHECK_SHAPE(v_scale, 1);
- params.v_scale_ptr = v_scale.data_ptr<float>();
- } else {
- params.v_scale_ptr = nullptr;
- }
- }
- if (max_seqlen_k > 0 && batch_size > 0) {
- auto stream = at::cuda::getCurrentCUDAStream().stream();
- run_mha_fwd(params, stream);
- } else if (batch_size > 0) {
- // If seqlen_k == 0, then we have an empty tensor. We need to set the output to 0.
- out.zero_();
- softmax_lse.fill_(std::numeric_limits<float>::infinity());
- }
- at::Tensor out_padded = out;
- if (head_size_og % 8 != 0) {
- out = out.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
- if (out_.has_value()) { out_.value().copy_(out); }
- }
- return {out, q_padded, k_padded, v_padded, out_padded, softmax_lse};
- }
- void run_mha_bwd(Flash_bwd_params ¶ms, cudaStream_t stream) {
- // FP16_SWITCH(!params.is_bf16, [&] {
- // HEADDIM_SWITCH(params.d, [&] {
- // run_mha_bwd_<elem_type, kHeadDim>(params, stream);
- // });
- // });
- if (!params.is_bf16) {
- if (params.d <= 64) {
- run_mha_bwd_<cutlass::half_t, 64>(params, stream);
- } else if (params.d <= 96) {
- run_mha_bwd_<cutlass::half_t, 96>(params, stream);
- } else if (params.d <= 128) {
- run_mha_bwd_<cutlass::half_t, 128>(params, stream);
- } else if (params.d <= 192) {
- run_mha_bwd_<cutlass::half_t, 192>(params, stream);
- } else {
- run_mha_bwd_<cutlass::half_t, 256>(params, stream);
- }
- } else {
- if (params.d <= 64) {
- run_mha_bwd_<cutlass::bfloat16_t, 64>(params, stream);
- } else if (params.d <= 96) {
- run_mha_bwd_<cutlass::bfloat16_t, 96>(params, stream);
- } else if (params.d <= 128) {
- run_mha_bwd_<cutlass::bfloat16_t, 128>(params, stream);
- } else if (params.d <= 192) {
- run_mha_bwd_<cutlass::bfloat16_t, 192>(params, stream);
- } else {
- run_mha_bwd_<cutlass::bfloat16_t, 256>(params, stream);
- }
- }
- }
- std::vector<at::Tensor>
- mha_bwd(const at::Tensor &dout, // batch_size x seqlen_q x num_heads, x head_size_og
- const at::Tensor &q, // batch_size x seqlen_q x num_heads x head_size
- const at::Tensor &k, // batch_size x seqlen_k x num_heads_k x head_size
- const at::Tensor &v, // batch_size x seqlen_k x num_heads_k x head_size
- const at::Tensor &out, // batch_size x seqlen_q x num_heads x head_size
- const at::Tensor &softmax_lse, // b x h x seqlen_q
- c10::optional<at::Tensor> &dq_, // batch_size x seqlen_q x num_heads x head_size
- c10::optional<at::Tensor> &dk_, // batch_size x seqlen_k x num_heads_k x head_size
- c10::optional<at::Tensor> &dv_, // batch_size x seqlen_k x num_heads_k x head_size
- const float softmax_scale,
- const bool is_causal,
- int window_size_left,
- int window_size_right,
- const float softcap,
- const bool deterministic) {
- #ifdef FLASHATTENTION_DISABLE_BACKWARD
- TORCH_CHECK(false, "This flash attention build does not support backward.");
- #endif
- auto dprops = at::cuda::getCurrentDeviceProperties();
- bool is_sm9x = dprops->major == 9 && dprops->minor >= 0;
- TORCH_CHECK(is_sm9x, "FlashAttentionHopper only supports Hopper GPUs or newer.");
- auto stream = at::cuda::getCurrentCUDAStream().stream();
- auto q_type = q.dtype();
- TORCH_CHECK(q_type == torch::kFloat16 || q_type == torch::kBFloat16,
- "FlashAttention only support fp16 and bf16 data type");
- TORCH_CHECK(k.dtype() == q_type, "query and key must have the same dtype");
- TORCH_CHECK(v.dtype() == q_type, "query and value must have the same dtype");
- TORCH_CHECK(out.dtype() == q_type, "query and out must have the same dtype");
- TORCH_CHECK(dout.dtype() == q_type, "query and dout must have the same dtype");
- CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
- CHECK_DEVICE(out); CHECK_DEVICE(dout); CHECK_DEVICE(softmax_lse);
- TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
- TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
- TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
- TORCH_CHECK(out.stride(-1) == 1, "out tensor must have contiguous last dimension");
- TORCH_CHECK(dout.stride(-1) == 1, "dout tensor must have contiguous last dimension");
- const auto sizes = q.sizes();
- const int batch_size = sizes[0];
- const int seqlen_q = sizes[1];
- const int num_heads = sizes[2];
- const int head_size_og = dout.size(3);
- const int head_size = sizes[3];
- const int seqlen_k = k.size(1);
- const int num_heads_k = k.size(2);
- TORCH_CHECK(batch_size > 0, "batch size must be positive");
- TORCH_CHECK(head_size % 8 == 0, "head_size should be a multiple of 8");
- TORCH_CHECK(head_size <= 256, "FlashAttention backward only supports head dimension at most 256");
- TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
- auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
- const int head_size_rounded = head_size <= 64 ? 64 : round_multiple(head_size, 32);
- // This needs to match the kernel configs
- const int kBlockM = head_size <= 64 ? (softcap == 0.0 ? 128 : 96) : 64;
- const int kBlockN = head_size <= 128 ? 128 : (head_size <= 192 ? 96 : 80);
- const int seqlen_q_rounded = round_multiple(seqlen_q, kBlockM);
- const int seqlen_k_rounded = round_multiple(seqlen_k, kBlockN);
- TORCH_CHECK(head_size == round_multiple(head_size_og, 8), "head_size must be head_size_og rounded to a multiple of 8");
- if (window_size_left >= seqlen_k - 1) { window_size_left = -1; }
- if (window_size_right >= seqlen_q - 1) { window_size_right = -1; }
- if (is_causal) {
- window_size_left = -1;
- window_size_right = 0;
- }
- CHECK_SHAPE(q, batch_size, seqlen_q, num_heads, head_size);
- CHECK_SHAPE(k, batch_size, seqlen_k, num_heads_k, head_size);
- CHECK_SHAPE(v, batch_size, seqlen_k, num_heads_k, head_size);
- CHECK_SHAPE(out, batch_size, seqlen_q, num_heads, head_size);
- CHECK_SHAPE(dout, batch_size, seqlen_q, num_heads, head_size_og);
- at::Tensor dq, dk, dv;
- if (dq_.has_value()) {
- dq = dq_.value();
- TORCH_CHECK(dq.dtype() == q_type, "dq must have the same dtype as q");
- CHECK_DEVICE(dq);
- TORCH_CHECK(dq.stride(-1) == 1, "dq must have contiguous last dimension");
- CHECK_SHAPE(dq, batch_size, seqlen_q, num_heads, head_size);
- } else {
- dq = torch::empty_like(q);
- }
- if (dk_.has_value()) {
- dk = dk_.value();
- TORCH_CHECK(dk.dtype() == q_type, "dk must have the same dtype as q");
- CHECK_DEVICE(dk);
- TORCH_CHECK(dk.stride(-1) == 1, "dk must have contiguous last dimension");
- CHECK_SHAPE(dk, batch_size, seqlen_k, num_heads_k, head_size);
- } else {
- dk = torch::empty_like(k);
- }
- if (dv_.has_value()) {
- dv = dv_.value();
- TORCH_CHECK(dv.dtype() == q_type, "dv must have the same dtype as q");
- CHECK_DEVICE(dv);
- TORCH_CHECK(dv.stride(-1) == 1, "dv must have contiguous last dimension");
- CHECK_SHAPE(dv, batch_size, seqlen_k, num_heads_k, head_size);
- } else {
- dv = torch::empty_like(v);
- }
- at::Tensor dout_padded;
- if (head_size_og % 8 != 0) {
- dout_padded = torch::nn::functional::pad(dout, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
- } else {
- dout_padded = dout;
- }
- // Otherwise the kernel will be launched from cuda:0 device
- // Cast to char to avoid compiler warning about narrowing
- at::cuda::CUDAGuard device_guard{(char)q.get_device()};
- auto opts = q.options();
- // Need softmax_d to have seqlen_q_rounded since we want its address to be aligned by 16/8 bytes for TMA / LDG.64
- auto softmax_d = torch::empty({batch_size, num_heads, seqlen_q_rounded}, opts.dtype(at::kFloat));
- auto softmax_lse_log2 = torch::empty({batch_size, num_heads, seqlen_q_rounded}, opts.dtype(at::kFloat));
- at::Tensor dq_accum;
- at::Tensor dk_accum, dv_accum;
- dq_accum = torch::empty({batch_size, num_heads, seqlen_q_rounded, head_size_rounded}, opts.dtype(at::kFloat));
- if (num_heads_k != num_heads) { // MQA / GQA
- dk_accum = torch::zeros({batch_size, num_heads_k, seqlen_k_rounded, head_size_rounded}, opts.dtype(at::kFloat));
- dv_accum = torch::zeros({batch_size, num_heads_k, seqlen_k_rounded, head_size_rounded}, opts.dtype(at::kFloat));
- }
- Flash_bwd_params params;
- set_params_dgrad(params,
- batch_size,
- seqlen_q, seqlen_k,
- seqlen_q_rounded, seqlen_k_rounded,
- num_heads, num_heads_k,
- head_size, head_size_rounded,
- q, k, v, out,
- dout_padded, dq, dk, dv,
- nullptr /*cu_seqlens_q*/,
- nullptr /*cu_seqlens_k*/,
- nullptr /*seqused_q_*/,
- nullptr /*seqused_k*/,
- dq_accum.data_ptr(),
- num_heads_k != num_heads ? dk_accum.data_ptr() : nullptr,
- num_heads_k != num_heads ? dv_accum.data_ptr() : nullptr,
- // nullptr,
- // nullptr,
- softmax_lse.data_ptr(),
- softmax_d.data_ptr(),
- /*p_dropout=*/0.f,
- softmax_scale,
- window_size_left,
- window_size_right,
- softcap,
- deterministic);
- params.softmax_lse_log2_ptr = softmax_lse_log2.data_ptr();
- // Will be zero'ed out in the backward preprocess kernel
- at::Tensor dq_semaphore = torch::empty({(seqlen_q + kBlockM - 1) / kBlockM, batch_size, num_heads}, opts.dtype(torch::kInt32));
- params.dq_semaphore = dq_semaphore.data_ptr<int>();
- // printf("dq_semaphore: %p, [%d, %d, %d]\n", params.dq_semaphore, (seqlen_q + 64 - 1) / 64, batch_size, num_heads);
- if (num_heads_k != num_heads) {
- at::Tensor dk_semaphore = torch::zeros({(seqlen_k + kBlockN - 1) / kBlockN, batch_size, num_heads_k}, opts.dtype(torch::kInt32));
- at::Tensor dv_semaphore = torch::zeros({(seqlen_k + kBlockN - 1) / kBlockN, batch_size, num_heads_k}, opts.dtype(torch::kInt32));
- params.dk_semaphore = dk_semaphore.data_ptr<int>();
- params.dv_semaphore = dv_semaphore.data_ptr<int>();
- }
- if (seqlen_q > 0) {
- run_mha_bwd(params, stream);
- } else {
- // If seqlen_q == 0, then we have an empty tensor. We need to set the output to 0.
- dk.zero_();
- dv.zero_();
- softmax_d.zero_();
- }
- if (head_size_og % 8 != 0) {
- dq = dq.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
- dk = dk.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
- dv = dv.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
- }
- return { dq, dk, dv, softmax_d, dq_accum, dk_accum, dv_accum};
- }
- std::vector<at::Tensor>
- mha_varlen_bwd(const at::Tensor &dout, // batch_size x seqlen_q x num_heads, x head_size_og
- const at::Tensor &q, // batch_size x seqlen_q x num_heads x head_size
- const at::Tensor &k, // batch_size x seqlen_k x num_heads_k x head_size
- const at::Tensor &v, // batch_size x seqlen_k x num_heads_k x head_size
- const at::Tensor &out, // batch_size x seqlen_q x num_heads x head_size
- const at::Tensor &softmax_lse, // b x h x seqlen_q
- c10::optional<at::Tensor> &dq_, // batch_size x seqlen_q x num_heads x head_size
- c10::optional<at::Tensor> &dk_, // batch_size x seqlen_k x num_heads_k x head_size
- c10::optional<at::Tensor> &dv_, // batch_size x seqlen_k x num_heads_k x head_size
- const at::Tensor &cu_seqlens_q, // b+1
- const at::Tensor &cu_seqlens_k, // b+1
- c10::optional<at::Tensor> &seqused_q_, // b. If given, only this many elements of each batch element's queries and outputs are used.
- c10::optional<at::Tensor> &seqused_k_, // b. If given, only this many elements of each batch element's keys are used.
- const int max_seqlen_q,
- const int max_seqlen_k, // max sequence length to choose the kernel
- const float softmax_scale,
- const bool is_causal,
- int window_size_left,
- int window_size_right,
- const float softcap,
- const bool deterministic) {
- #ifdef FLASHATTENTION_DISABLE_BACKWARD
- TORCH_CHECK(false, "This flash attention build does not support backward.");
- #endif
- auto dprops = at::cuda::getCurrentDeviceProperties();
- bool is_sm9x = dprops->major == 9 && dprops->minor >= 0;
- TORCH_CHECK(is_sm9x, "FlashAttentionHopper only supports Hopper GPUs or newer.");
- auto stream = at::cuda::getCurrentCUDAStream().stream();
- auto q_type = q.dtype();
- TORCH_CHECK(q_type == torch::kFloat16 || q_type == torch::kBFloat16,
- "FlashAttention only support fp16 and bf16 data type");
- TORCH_CHECK(k.dtype() == q_type, "query and key must have the same dtype");
- TORCH_CHECK(v.dtype() == q_type, "query and value must have the same dtype");
- TORCH_CHECK(out.dtype() == q_type, "query and out must have the same dtype");
- TORCH_CHECK(dout.dtype() == q_type, "query and dout must have the same dtype");
- TORCH_CHECK(cu_seqlens_q.dtype() == torch::kInt32, "cu_seqlens_q must have dtype int32");
- TORCH_CHECK(cu_seqlens_k.dtype() == torch::kInt32, "cu_seqlens_k must have dtype int32");
- CHECK_DEVICE(q); CHECK_DEVICE(k); CHECK_DEVICE(v);
- CHECK_DEVICE(out); CHECK_DEVICE(dout); CHECK_DEVICE(softmax_lse);
- CHECK_DEVICE(cu_seqlens_q); CHECK_DEVICE(cu_seqlens_k);
- TORCH_CHECK(q.stride(-1) == 1, "Input tensor must have contiguous last dimension");
- TORCH_CHECK(k.stride(-1) == 1, "Input tensor must have contiguous last dimension");
- TORCH_CHECK(v.stride(-1) == 1, "Input tensor must have contiguous last dimension");
- TORCH_CHECK(out.stride(-1) == 1, "out tensor must have contiguous last dimension");
- TORCH_CHECK(dout.stride(-1) == 1, "dout tensor must have contiguous last dimension");
- CHECK_CONTIGUOUS(cu_seqlens_q);
- CHECK_CONTIGUOUS(cu_seqlens_k);
- const auto sizes = q.sizes();
- const int total_q = sizes[0];
- const int batch_size = cu_seqlens_q.numel() - 1;
- const int num_heads = sizes[1];
- const int head_size_og = dout.size(2);
- const int head_size = sizes[2];
- const int total_k = k.size(0);
- const int num_heads_k = k.size(1);
- TORCH_CHECK(batch_size > 0, "batch size must be positive");
- TORCH_CHECK(head_size % 8 == 0, "head_size should be a multiple of 8");
- TORCH_CHECK(head_size <= 256, "FlashAttention backward only supports head dimension at most 256");
- TORCH_CHECK(num_heads % num_heads_k == 0, "Number of heads in key/value must divide number of heads in query");
- auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
- const int head_size_rounded = head_size <= 64 ? 64 : round_multiple(head_size, 32);
- // This needs to match the kernel configs
- const int kBlockM = head_size <= 64 ? (softcap == 0.0 ? 128 : 96) : 64;
- const int kBlockN = head_size <= 128 ? 128 : (head_size <= 192 ? 96 : 80);
- const int seqlen_q_rounded = round_multiple(max_seqlen_q, kBlockM);
- const int seqlen_k_rounded = round_multiple(max_seqlen_k, kBlockN);
- int const total_q_padded_rounded = round_multiple(total_q + batch_size * kBlockM, kBlockM);
- int const total_k_padded_rounded = round_multiple(total_k + batch_size * kBlockN, kBlockN);
- TORCH_CHECK(head_size == round_multiple(head_size_og, 8), "head_size must be head_size_og rounded to a multiple of 8");
- if (window_size_left >= max_seqlen_k - 1) { window_size_left = -1; }
- if (window_size_right >= max_seqlen_q - 1) { window_size_right = -1; }
- if (is_causal) {
- window_size_left = -1;
- window_size_right = 0;
- }
- CHECK_SHAPE(q, total_q, num_heads, head_size_og);
- CHECK_SHAPE(k, total_k, num_heads_k, head_size_og);
- CHECK_SHAPE(v, total_k, num_heads_k, head_size_og);
- CHECK_SHAPE(out, total_q, num_heads, head_size);
- CHECK_SHAPE(dout, total_q, num_heads, head_size_og);
- CHECK_SHAPE(cu_seqlens_q, batch_size + 1);
- CHECK_SHAPE(cu_seqlens_k, batch_size + 1);
- if (seqused_q_.has_value()){
- auto seqused_q = seqused_q_.value();
- TORCH_CHECK(seqused_q.dtype() == torch::kInt32, "seqused_q must have dtype int32");
- TORCH_CHECK(seqused_q.is_cuda(), "seqused_q must be on CUDA device");
- TORCH_CHECK(seqused_q.is_contiguous(), "seqused_q must be contiguous");
- CHECK_SHAPE(seqused_q, batch_size);
- }
- if (seqused_k_.has_value()){
- auto seqused_k = seqused_k_.value();
- TORCH_CHECK(seqused_k.dtype() == torch::kInt32, "seqused_k must have dtype int32");
- TORCH_CHECK(seqused_k.is_cuda(), "seqused_k must be on CUDA device");
- TORCH_CHECK(seqused_k.is_contiguous(), "seqused_k must be contiguous");
- CHECK_SHAPE(seqused_k, batch_size);
- }
- at::Tensor dq, dk, dv;
- if (dq_.has_value()) {
- dq = dq_.value();
- TORCH_CHECK(dq.dtype() == q_type, "dq must have the same dtype as q");
- CHECK_DEVICE(dq);
- TORCH_CHECK(dq.stride(-1) == 1, "dq must have contiguous last dimension");
- CHECK_SHAPE(dq, total_q, num_heads, head_size);
- } else {
- dq = torch::empty_like(q);
- }
- if (dk_.has_value()) {
- dk = dk_.value();
- TORCH_CHECK(dk.dtype() == q_type, "dk must have the same dtype as q");
- CHECK_DEVICE(dk);
- TORCH_CHECK(dk.stride(-1) == 1, "dk must have contiguous last dimension");
- CHECK_SHAPE(dk, total_k, num_heads_k, head_size);
- } else {
- dk = torch::empty_like(k);
- }
- if (dv_.has_value()) {
- dv = dv_.value();
- TORCH_CHECK(dv.dtype() == q_type, "dv must have the same dtype as q");
- CHECK_DEVICE(dv);
- TORCH_CHECK(dv.stride(-1) == 1, "dv must have contiguous last dimension");
- CHECK_SHAPE(dv, total_k, num_heads_k, head_size);
- } else {
- dv = torch::empty_like(v);
- }
- at::Tensor dout_padded;
- if (head_size_og % 8 != 0) {
- dout_padded = torch::nn::functional::pad(dout, torch::nn::functional::PadFuncOptions({0, 8 - head_size_og % 8}));
- } else {
- dout_padded = dout;
- }
- // Otherwise the kernel will be launched from cuda:0 device
- // Cast to char to avoid compiler warning about narrowing
- at::cuda::CUDAGuard device_guard{(char)q.get_device()};
- auto opts = q.options();
- // Need softmax_d to have total_q_padded_rounded since we want its address to be aligned by 16/8 bytes for TMA / LDG.64
- auto softmax_d = torch::empty({num_heads, total_q_padded_rounded}, opts.dtype(at::kFloat));
- auto softmax_lse_log2 = torch::empty({num_heads, total_q_padded_rounded}, opts.dtype(at::kFloat));
- at::Tensor dq_accum;
- at::Tensor dk_accum, dv_accum;
- dq_accum = torch::empty({num_heads, total_q_padded_rounded, head_size_rounded}, opts.dtype(at::kFloat));
- if (num_heads_k != num_heads) { // MQA / GQA
- dk_accum = torch::zeros({num_heads_k, total_k_padded_rounded, head_size_rounded}, opts.dtype(at::kFloat));
- dv_accum = torch::zeros({num_heads_k, total_k_padded_rounded, head_size_rounded}, opts.dtype(at::kFloat));
- }
- Flash_bwd_params params;
- set_params_dgrad(params,
- batch_size,
- max_seqlen_q, max_seqlen_k,
- seqlen_q_rounded, seqlen_k_rounded,
- num_heads, num_heads_k,
- head_size, head_size_rounded,
- q, k, v, out,
- dout_padded, dq, dk, dv,
- cu_seqlens_q.data_ptr(),
- cu_seqlens_k.data_ptr(),
- seqused_q_.has_value() ? seqused_q_.value().data_ptr() : nullptr,
- seqused_k_.has_value() ? seqused_k_.value().data_ptr() : nullptr,
- dq_accum.data_ptr(),
- num_heads_k != num_heads ? dk_accum.data_ptr() : nullptr,
- num_heads_k != num_heads ? dv_accum.data_ptr() : nullptr,
- // nullptr,
- // nullptr,
- softmax_lse.data_ptr(),
- softmax_d.data_ptr(),
- /*p_dropout=*/0.f,
- softmax_scale,
- window_size_left,
- window_size_right,
- softcap,
- deterministic);
- params.total_q = total_q;
- params.total_k = total_k;
- params.softmax_lse_log2_ptr = softmax_lse_log2.data_ptr();
- // Will be zero'ed out in the backward preprocess kernel
- at::Tensor dq_semaphore = torch::empty({(max_seqlen_q + kBlockM - 1) / kBlockM, batch_size, num_heads}, opts.dtype(torch::kInt32));
- params.dq_semaphore = dq_semaphore.data_ptr<int>();
- if (num_heads_k != num_heads) {
- // TODO: do we need to zero them out?
- at::Tensor dk_semaphore = torch::empty({(max_seqlen_k + kBlockN - 1) / kBlockN, batch_size, num_heads_k}, opts.dtype(torch::kInt32));
- at::Tensor dv_semaphore = torch::empty({(max_seqlen_k + kBlockN - 1) / kBlockN, batch_size, num_heads_k}, opts.dtype(torch::kInt32));
- params.dk_semaphore = dk_semaphore.data_ptr<int>();
- params.dv_semaphore = dv_semaphore.data_ptr<int>();
- }
- if (max_seqlen_q > 0) {
- run_mha_bwd(params, stream);
- } else {
- // If max_seqlen_q == 0, then we have an empty tensor. We need to set the output to 0.
- dk.zero_();
- dv.zero_();
- softmax_d.zero_();
- }
- if (head_size_og % 8 != 0) {
- dq = dq.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
- dk = dk.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
- dv = dv.index({"...", torch::indexing::Slice(torch::indexing::None, head_size_og)});
- }
- return { dq, dk, dv, softmax_d, dq_accum, softmax_lse_log2 };
- }
- PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
- m.doc() = "FlashAttention";
- m.def("fwd", &mha_fwd, "Forward pass");
- m.def("fwd_varlen", &mha_varlen_fwd, "Varlen forward pass");
- m.def("bwd", &mha_bwd, "Backward pass");
- m.def("bwd_varlen", &mha_varlen_bwd, "Varlen backward pass");
- }
|