123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109 |
- # Copyright (c) 2023, Tri Dao.
- import math
- import re
- from collections import OrderedDict
- import torch
- import torch.nn.functional as F
- from transformers import GPT2Config, GPTJConfig
- def remap_state_dict_hf_gptj(state_dict, config):
- def key_mapping_layers(key):
- return re.sub(r"^transformer.h.", "transformer.layers.", key)
- state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())
- # Word embedding
- def key_mapping_emb(key):
- return re.sub(r"^transformer.wte.", "transformer.embeddings.word_embeddings.", key)
- state_dict = OrderedDict((key_mapping_emb(k), v) for k, v in state_dict.items())
- word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight")
- # It's possible that vocab_size is padded to be a multiple of 8, for example.
- pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
- vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
- state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
- word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
- )
- if getattr(config, "tie_word_embeddings"):
- state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"]
- else:
- output_embeddings = state_dict.pop("lm_head.weight")
- # It's possible that vocab_size is padded to be a multiple of 8, for example.
- state_dict["lm_head.weight"] = F.pad(
- output_embeddings, (0, 0, 0, vocab_size - output_embeddings.shape[0])
- )
- output_embeddings_bias = state_dict.pop("lm_head.bias")
- state_dict["lm_head.bias"] = F.pad(
- output_embeddings_bias, (0, vocab_size - output_embeddings_bias.shape[0])
- )
- # LayerNorm
- def key_mapping_ln(key):
- return re.sub(r"^transformer.layers.(\d+).ln_1.", r"transformer.layers.\1.norm1.", key)
- state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
- # MLP
- def key_mapping_mlp(key):
- key = re.sub(
- r"^transformer.layers.(\d+).mlp.fc_in.", r"transformer.layers.\1.mlp.fc1.", key
- )
- key = re.sub(
- r"^transformer.layers.(\d+).mlp.fc_out.", r"transformer.layers.\1.mlp.fc2.", key
- )
- return key
- state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
- # Attention
- for l in range(config.n_layer):
- Wq = state_dict.pop(f"transformer.layers.{l}.attn.q_proj.weight")
- Wk = state_dict.pop(f"transformer.layers.{l}.attn.k_proj.weight")
- Wv = state_dict.pop(f"transformer.layers.{l}.attn.v_proj.weight")
- state_dict[f"transformer.layers.{l}.mixer.Wqkv.weight"] = torch.cat([Wq, Wk, Wv], dim=0)
- # We don't store these biases
- state_dict.pop(f"transformer.layers.{l}.attn.bias")
- state_dict.pop(f"transformer.layers.{l}.attn.masked_bias")
- def key_mapping_attn(key):
- return re.sub(
- r"^transformer.layers.(\d+).attn.out_proj.",
- r"transformer.layers.\1.mixer.out_proj.",
- key,
- )
- state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
- return state_dict
- def gptj_config_to_gpt2_config(gptj_config: GPTJConfig) -> GPT2Config:
- headdim = gptj_config.n_embd // gptj_config.n_head
- return GPT2Config(
- vocab_size=gptj_config.vocab_size,
- n_positions=0, # No absolute position embedding
- n_embd=gptj_config.n_embd,
- n_layer=gptj_config.n_layer,
- n_head=gptj_config.n_head,
- n_inner=gptj_config.n_inner,
- activation_function=gptj_config.activation_function,
- resid_pdrop=gptj_config.resid_pdrop,
- embd_pdrop=gptj_config.embd_pdrop,
- attn_pdrop=gptj_config.attn_pdrop,
- layer_norm_epsilon=gptj_config.layer_norm_epsilon,
- initializer_range=gptj_config.initializer_range,
- bos_token_id=gptj_config.bos_token_id,
- eos_token_id=gptj_config.eos_token_id,
- # These are new arguments not in the original GPT2Config
- prenorm=True,
- parallel_block=True,
- parallel_block_tied_norm=True,
- rotary_emb_fraction=gptj_config.rotary_dim / headdim,
- rotary_emb_interleaved=True,
- tie_word_embeddings=False,
- qkv_proj_bias=False,
- out_proj_bias=False,
- lm_head_bias=True,
- )
|