123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233 |
- import math
- import re
- from collections import OrderedDict
- import torch
- import torch.nn.functional as F
- from transformers import GPT2Config, GPTBigCodeConfig, PretrainedConfig
- def remap_state_dict_hf_bigcode(state_dict, config: PretrainedConfig):
- """
- Map the state_dict of a Huggingface BigCode model to be flash_attn compatible.
- """
- # Word embedding and position embedding
- def key_mapping_pos_emb(key):
- return re.sub(r"^transformer.wpe.", "transformer.embeddings.position_embeddings.", key)
- state_dict = OrderedDict((key_mapping_pos_emb(k), v) for k, v in state_dict.items())
- word_embeddings = state_dict.pop("transformer.wte.weight")
- # It's possible that vocab_size is padded to be a multiple of 8, for example.
- pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
- vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
- state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad(
- word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
- )
- state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"]
- # LayerNorm
- def key_mapping_ln(key):
- key = re.sub(r"^transformer.ln_f.(weight|bias)", r"transformer.ln_f.\1", key)
- key = re.sub(
- r"^transformer.h.(\d+).ln_(1|2).(weight|bias)",
- r"transformer.layers.\1.norm\2.\3",
- key,
- )
- return key
- state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
- def key_mapping_mlp(key):
- key = re.sub(
- r"^transformer.h.(\d+).mlp.c_fc.weight",
- r"transformer.layers.\1.mlp.fc1.weight",
- key,
- )
- key = re.sub(
- r"^transformer.h.(\d+).mlp.c_proj.weight",
- r"transformer.layers.\1.mlp.fc2.weight",
- key,
- )
- key = re.sub(
- r"^transformer.h.(\d+).mlp.c_fc.bias",
- r"transformer.layers.\1.mlp.fc1.bias",
- key,
- )
- key = re.sub(
- r"^transformer.h.(\d+).mlp.c_proj.bias",
- r"transformer.layers.\1.mlp.fc2.bias",
- key,
- )
- return key
- state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
- # TODO: add support for multi-head attention
- assert config.multi_query, "Only multi-query attention is supported"
- # Attention
- for d in range(config.num_hidden_layers):
- embed_dim = config.n_embd
- head_dim = embed_dim // config.n_head
- c_attn_weight = state_dict.pop(f"transformer.h.{d}.attn.c_attn.weight")
- # with multi-query attention, the weights have shape (embed_dim, embed_dim + head_dim + head_dim)
- # see https://github.com/huggingface/transformers/blob/95b374952dc27d8511541d6f5a4e22c9ec11fb24/src/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py#L112
- # see also https://github.com/ggerganov/ggml/blob/dd1d575956e54c5bdc07632f25506b3b1884dbd2/examples/starcoder/convert-hf-to-ggml.py#L183
- # ((n_head + 2) * head_dim, embed_dim) -> (3 * n_heads * head_dim, hidden_dim)
- q, k, v = torch.split(c_attn_weight, [embed_dim, head_dim, head_dim], dim=0)
- # duplicate k, v along the first axis (head_dim, hidden_dim) -> (n_heads * head_dim, hidden_dim)
- k = torch.tile(k, (config.n_head, 1))
- v = torch.tile(v, (config.n_head, 1))
- state_dict[f"transformer.layers.{d}.mixer.Wqkv.weight"] = torch.cat((q, k, v), dim=0)
- # same deal with the bias
- c_attn_bias = state_dict.pop(f"transformer.h.{d}.attn.c_attn.bias")
- # ((n_head + 2) * head_dim, embed_dim) -> (3 * n_heads * head_dim, hidden_dim)
- q, k, v = torch.split(c_attn_bias, [embed_dim, head_dim, head_dim], dim=0)
- # duplicate k, v along the first axis (head_dim, hidden_dim) -> (n_heads * head_dim, hidden_dim)
- k = torch.tile(k, (config.n_head,))
- v = torch.tile(v, (config.n_head,))
- state_dict[f"transformer.layers.{d}.mixer.Wqkv.bias"] = torch.cat((q, k, v), dim=0)
- def key_mapping_attn(key):
- key = re.sub(
- r"^transformer.h.(\d+).attn.c_proj.weight",
- r"transformer.layers.\1.mixer.out_proj.weight",
- key,
- )
- key = re.sub(
- r"^transformer.h.(\d+).attn.c_proj.bias",
- r"transformer.layers.\1.mixer.out_proj.bias",
- key,
- )
- return key
- state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
- return state_dict
- def inv_remap_state_dict_hf_bigcode(state_dict, config: PretrainedConfig):
- """
- Map the state_dict of a flash_attn model to be Huggingface BigCode compatible.
- This function is meant to be the inverse of remap_state_dict_hf_bigcode.
- """
- # Word embedding and position embeddings
- def inv_key_mapping_pos_emb(key):
- return re.sub(r"^transformer.embeddings.position_embeddings.", "transformer.wpe.", key)
- state_dict = OrderedDict((inv_key_mapping_pos_emb(k), v) for k, v in state_dict.items())
- word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight")
- word_embeddings = word_embeddings[:, : config.vocab_size]
- state_dict["transformer.wte.weight"] = word_embeddings
- state_dict["lm_head.weight"] = word_embeddings
- # LayerNorm
- def inv_key_mapping_ln(key):
- key = re.sub(r"^transformer.ln_f.(weight|bias)", r"transformer.ln_f.\1", key)
- key = re.sub(
- r"^transformer.layers.(\d+).norm(1|2).(weight|bias)",
- r"transformer.h.\1.ln_\2.\3",
- key,
- )
- return key
- state_dict = OrderedDict((inv_key_mapping_ln(k), v) for k, v in state_dict.items())
- # MLPs
- def inv_key_mapping_mlp(key):
- key = re.sub(
- r"^transformer.layers.(\d+).mlp.fc1.weight",
- r"transformer.h.\1.mlp.c_fc.weight",
- key,
- )
- key = re.sub(
- r"^transformer.layers.(\d+).mlp.fc2.weight",
- r"transformer.h.\1.mlp.c_proj.weight",
- key,
- )
- key = re.sub(
- r"^transformer.layers.(\d+).mlp.fc1.bias",
- r"transformer.h.\1.mlp.c_fc.bias",
- key,
- )
- key = re.sub(
- r"^transformer.layers.(\d+).mlp.fc2.bias",
- r"transformer.h.\1.mlp.c_proj.bias",
- key,
- )
- return key
- state_dict = OrderedDict((inv_key_mapping_mlp(k), v) for k, v in state_dict.items())
- # Attention
- for d in range(config.num_hidden_layers):
- embed_dim = config.n_embd
- head_dim = embed_dim // config.n_head
- Wqkv_weight = state_dict.pop(f"transformer.layers.{d}.mixer.Wqkv.weight")
- q, k, v = torch.split(
- Wqkv_weight, [embed_dim, head_dim * config.n_head, head_dim * config.n_head], dim=0
- )
- c_attn_weight = torch.cat((q, k[:head_dim], v[:head_dim]), dim=0)
- state_dict[f"transformer.h.{d}.attn.c_attn.weight"] = c_attn_weight
- # Same deal with the bias
- Wqkv_bias = state_dict.pop(f"transformer.layers.{d}.mixer.Wqkv.bias")
- q, k, v = torch.split(
- Wqkv_bias, [embed_dim, head_dim * config.n_head, head_dim * config.n_head], dim=0
- )
- c_attn_bias = torch.cat((q, k[:head_dim], v[:head_dim]), dim=0)
- state_dict[f"transformer.h.{d}.attn.c_attn.bias"] = c_attn_bias
- def inv_key_mapping_attn(key):
- key = re.sub(
- r"^transformer.layers.(\d+).mixer.out_proj.weight",
- r"transformer.h.\1.attn.c_proj.weight",
- key,
- )
- key = re.sub(
- r"^transformer.layers.(\d+).mixer.out_proj.bias",
- r"transformer.h.\1.attn.c_proj.bias",
- key,
- )
- return key
- state_dict = OrderedDict((inv_key_mapping_attn(k), v) for k, v in state_dict.items())
- return state_dict
- def bigcode_config_to_gpt2_config(bigcode_config: GPTBigCodeConfig) -> GPT2Config:
- return GPT2Config(
- activation_function=bigcode_config.activation_function,
- attn_pdrop=bigcode_config.attn_pdrop,
- bos_token_id=bigcode_config.bos_token_id,
- embd_pdrop=bigcode_config.embd_pdrop,
- eos_token_id=bigcode_config.eos_token_id,
- initializer_range=bigcode_config.initializer_range,
- layer_norm_epsilon=bigcode_config.layer_norm_epsilon,
- max_batch_size=bigcode_config.max_batch_size,
- max_sequence_length=bigcode_config.max_sequence_length,
- model_type=bigcode_config.model_type,
- multi_query=bigcode_config.multi_query,
- n_embd=bigcode_config.n_embd,
- n_head=bigcode_config.n_head,
- n_inner=bigcode_config.n_inner,
- n_layer=bigcode_config.n_layer,
- n_positions=bigcode_config.n_positions,
- resid_pdrop=bigcode_config.resid_pdrop,
- scale_attn_weights=bigcode_config.scale_attn_weights,
- summary_activation=bigcode_config.summary_activation,
- summary_first_dropout=bigcode_config.summary_first_dropout,
- summary_proj_to_labels=bigcode_config.summary_proj_to_labels,
- summary_type=bigcode_config.summary_type,
- summary_use_proj=bigcode_config.summary_use_proj,
- use_cache=bigcode_config.use_cache,
- vocab_size=bigcode_config.vocab_size,
- )
|