123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703 |
- import torch
- import triton
- import triton.language as tl
- from .utils import _strides, get_padded_headsize
- @triton.jit
- def _fwd_kernel_splitK(
- Q,
- K,
- V,
- sm_scale,
- Out_splitK, # [B, H, split_k, Mq, K]
- Metadata, # [B, H, 2, split_k, M_ceil] contains [mi, li]
- K_new,
- V_new,
- Cache_seqlens,
- Cache_batch_idx,
- Alibi_slopes,
- stride_qz,
- stride_qm,
- stride_qg,
- stride_qh,
- stride_qd,
- stride_kz,
- stride_kn,
- stride_kg,
- stride_kh,
- stride_kd,
- stride_vz,
- stride_vn,
- stride_vg,
- stride_vh,
- stride_vd,
- stride_osk_zhg,
- stride_osk_s,
- stride_osk_m,
- stride_osk_d,
- stride_mzhg,
- stride_m2,
- stride_ms,
- stride_mm,
- stride_kn_z,
- stride_kn_n,
- stride_kn_g,
- stride_kn_h,
- stride_kn_d,
- stride_vn_z,
- stride_vn_n,
- stride_vn_g,
- stride_vn_h,
- stride_vn_d,
- stride_az,
- stride_ah,
- Z,
- N_CTX_Q,
- N_CTX_K,
- N_CTX_NEW,
- BLOCK_N_PER_SPLIT,
- H_q: tl.constexpr,
- H_kv: tl.constexpr,
- G_q: tl.constexpr,
- BLOCK_M: tl.constexpr,
- BLOCK_DMODEL: tl.constexpr,
- ACTUAL_BLOCK_DMODEL: tl.constexpr,
- BLOCK_N: tl.constexpr,
- BOUNDS_CHECKS_N: tl.constexpr,
- USE_CACHE_SEQLENs: tl.constexpr,
- USE_CACHE_BATCH_IDX: tl.constexpr,
- NEW_KV: tl.constexpr,
- IS_GQA: tl.constexpr,
- IS_CAUSAL: tl.constexpr,
- USE_ALIBI: tl.constexpr,
- ):
- # Padding
- PADDED_HEAD: tl.constexpr = (ACTUAL_BLOCK_DMODEL != BLOCK_DMODEL)
- if PADDED_HEAD:
- d_mask = tl.arange(0, BLOCK_DMODEL) < ACTUAL_BLOCK_DMODEL
- start_m = tl.program_id(0)
- off_zhg = tl.program_id(1)
- off_z = off_zhg // (H_q * G_q)
- off_h_q = (off_zhg // G_q) % H_q
- off_g_q = off_zhg % G_q
- splitk_idx = tl.program_id(2)
- # pick batch index
- if USE_CACHE_BATCH_IDX:
- cache_batch_idx = tl.load(Cache_batch_idx + off_z)
- else:
- cache_batch_idx = off_z
- # Load ALiBi slope if enabled
- if USE_ALIBI:
- a_offset = off_z * stride_az + off_h_q * stride_ah
- alibi_slope = tl.load(Alibi_slopes + a_offset)
- else:
- alibi_slope = None
- lo = splitk_idx * BLOCK_N_PER_SPLIT
- if USE_CACHE_SEQLENs:
- cache_seqlen_last_idx = tl.load(Cache_seqlens + off_z)
- if NEW_KV:
- kv_len = cache_seqlen_last_idx + N_CTX_NEW
- else:
- kv_len = cache_seqlen_last_idx
- else:
- kv_len = N_CTX_K
- hi = tl.minimum((splitk_idx + 1) * BLOCK_N_PER_SPLIT, kv_len)
- HEAD_RATIO: tl.constexpr = H_q // H_kv
- if IS_GQA:
- k_head_idx = off_h_q // HEAD_RATIO
- v_head_idx = k_head_idx
- else:
- k_head_idx = off_h_q
- v_head_idx = off_h_q
- # calculate base offset
- k_base = K + k_head_idx * stride_kh + cache_batch_idx * stride_kz + off_g_q * stride_kg
- v_base = V + v_head_idx * stride_vh + cache_batch_idx * stride_vz + off_g_q * stride_vg
- # Copy new Keys and Values into Cache
- if NEW_KV:
- knew_base = K_new + k_head_idx * stride_kn_h + off_z * stride_kn_z + off_g_q * stride_kn_g
-
- # Determine the starting position for new data in the cache
- if USE_CACHE_SEQLENs:
- start_idx = tl.load(Cache_seqlens + off_z)
- else:
- start_idx = N_CTX_K - N_CTX_NEW
- # Copy new Keys
- for i in range(0, N_CTX_NEW, BLOCK_N):
- # Load from K_new
- k_new_block = tl.load(
- knew_base +
- tl.arange(0, BLOCK_DMODEL)[:, None] * stride_kn_d +
- (tl.arange(0, BLOCK_N) + i)[None, :] * stride_kn_n,
- mask=(tl.arange(0, BLOCK_N)[None, :] + i < N_CTX_NEW) &
- (tl.arange(0, BLOCK_DMODEL)[:, None] < ACTUAL_BLOCK_DMODEL),
- other=0
- )
-
- # Store to K
- tl.store(
- k_base +
- tl.arange(0, BLOCK_DMODEL)[:, None] * stride_kd +
- (tl.arange(0, BLOCK_N) + i + start_idx)[None, :] * stride_kn,
- k_new_block,
- mask=(tl.arange(0, BLOCK_N)[None, :] + i < N_CTX_NEW) &
- (tl.arange(0, BLOCK_DMODEL)[:, None] < ACTUAL_BLOCK_DMODEL),
- )
- # Copy new Values
- vnew_base = V_new + v_head_idx * stride_vn_h + off_z * stride_vn_z + off_g_q * stride_vn_g
- for i in range(0, N_CTX_NEW, BLOCK_N):
- # Load from V_new
- v_new_block = tl.load(
- vnew_base +
- (tl.arange(0, BLOCK_N) + i)[:, None] * stride_vn_n +
- tl.arange(0, BLOCK_DMODEL)[None, :] * stride_vn_d,
- mask=(tl.arange(0, BLOCK_N)[:, None] + i < N_CTX_NEW) &
- (tl.arange(0, BLOCK_DMODEL)[None, :] < ACTUAL_BLOCK_DMODEL),
- other=0
- )
-
- # Store to V
- tl.store(
- v_base +
- (tl.arange(0, BLOCK_N) + i + start_idx)[:, None] * stride_vn +
- tl.arange(0, BLOCK_DMODEL)[None, :] * stride_vd,
- v_new_block,
- mask=(tl.arange(0, BLOCK_N)[:, None] + i < N_CTX_NEW) &
- (tl.arange(0, BLOCK_DMODEL)[None, :] < ACTUAL_BLOCK_DMODEL),
- )
- Q_block_ptr = tl.make_block_ptr(
- base=Q + off_h_q * stride_qh + off_z * stride_qz + off_g_q * stride_qg,
- shape=(N_CTX_Q, ACTUAL_BLOCK_DMODEL),
- strides=(stride_qm, stride_qd),
- offsets=(start_m * BLOCK_M, 0),
- block_shape=(BLOCK_M, BLOCK_DMODEL),
- order=(1, 0),
- )
- K_block_ptr = tl.make_block_ptr(
- base=k_base,
- shape=(ACTUAL_BLOCK_DMODEL, hi),
- strides=(stride_kd, stride_kn),
- offsets=(0, lo),
- block_shape=(BLOCK_DMODEL, BLOCK_N),
- order=(0, 1),
- )
- V_block_ptr = tl.make_block_ptr(
- base=v_base,
- shape=(hi, ACTUAL_BLOCK_DMODEL),
- strides=(stride_vn, stride_vd),
- offsets=(lo, 0),
- block_shape=(BLOCK_N, BLOCK_DMODEL),
- order=(1, 0),
- )
- K_scale_shift_block_ptr = None
- V_scale_shift_block_ptr = None
- # initialize pointer to m and l
- m_i = tl.full([BLOCK_M], float("-inf"), dtype=tl.float32)
- l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
- acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) # noqa: F821
- # scale sm_scale by log_2(e) and use
- # 2^x instead of exp in the loop because CSE and LICM
- # don't work as expected with `exp` in the loop
- qk_scale = sm_scale * 1.44269504
- # load q: it will stay in SRAM throughout
- q = tl.load( # noqa: F821
- tl.advance(Q_block_ptr, (0, 0)), boundary_check=(0, ))
- q = (q * qk_scale).to(q.dtype)
- if PADDED_HEAD:
- q = tl.where(d_mask[None, :], q, 0.0)
- # loop over k, v and update accumulator
- for start_n in range(lo, hi, BLOCK_N):
- k, v = load_k_v_group(
- K_block_ptr,
- V_block_ptr,
- K_scale_shift_block_ptr,
- V_scale_shift_block_ptr,
- BOUNDS_CHECKS_N,
- 1,
- BLOCK_DMODEL,
- ACTUAL_BLOCK_DMODEL,
- Q.dtype.element_ty,
- 0,
- )
- if PADDED_HEAD:
- k = tl.where(d_mask[:, None], k, 0.0)
- v = tl.where(d_mask[None, :], v, 0.0)
- # -- compute qk ---
- qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
- qk += tl.dot(q, k) # noqa: F821
- if USE_ALIBI:
- row_idx = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
- col_idx = start_n + tl.arange(0, BLOCK_N)
-
- # Compute relative positions
- relative_pos = row_idx[:, None] + kv_len - (N_CTX_Q + col_idx[None, :])
- relative_pos = tl.abs(relative_pos)
-
- # Compute ALiBi bias
- alibi_bias = -1 * alibi_slope * relative_pos
- qk += (alibi_bias * 1.44269504)
- # Apply causal mask if IS_CAUSAL is True
- if IS_CAUSAL:
- row_idx = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
- col_idx = start_n + tl.arange(0, BLOCK_N)
-
- # create a N_CTX_Q x kv_len causal mask
- col_offset = N_CTX_Q - kv_len
- causal_mask = row_idx[:, None] >= (col_offset + col_idx[None, :])
- # Apply the mask
- qk = tl.where(causal_mask, qk, float("-inf"))
- # TODO: This is slow, and only needed at the last iteration.
- # Maybe we can unroll the last iteration instead?
- if BOUNDS_CHECKS_N:
- qk = tl.where(tl.arange(0, BLOCK_N) < hi - start_n, qk, float("-inf"))
- # -- compute scaling constant ---
- m_i_new = tl.maximum(m_i, tl.max(qk, 1))
- if IS_CAUSAL:
- alpha = tl.math.exp2(tl.where(m_i > float("-inf"), m_i - m_i_new, float("-inf")))
- else:
- alpha = tl.math.exp2(m_i - m_i_new)
- # cause of nan because subtracting infs
- if IS_CAUSAL:
- qk = tl.where(qk > float("-inf"), qk - m_i_new[:, None], float("-inf"))
- else:
- qk = qk - m_i_new[:, None]
-
- p = tl.math.exp2(qk)
- # -- update m_i and l_i --
- l_i = l_i * alpha + tl.sum(p, 1)
- m_i = m_i_new
- p = p.to(Q.dtype.element_ty)
- # -- scale and update acc --
- acc *= alpha[:, None]
- acc += tl.dot(p.to(v.dtype), v)
-
- # update pointers
- K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
- V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
- # write back O
- O_block_ptr = tl.make_block_ptr(
- base=Out_splitK + off_zhg * stride_osk_zhg + splitk_idx * stride_osk_s,
- shape=(N_CTX_Q, BLOCK_DMODEL),
- strides=(stride_osk_m, 1),
- offsets=(start_m * BLOCK_M, 0),
- block_shape=(BLOCK_M, BLOCK_DMODEL),
- order=(1, 0),
- )
- tl.store(
- tl.advance(O_block_ptr, (0, 0)),
- acc,
- boundary_check=(0, ),
- )
- # Write metadata for split-K reduction
- Metadata_ptr = (Metadata + off_zhg * stride_mzhg + splitk_idx * stride_ms + start_m * BLOCK_M +
- tl.arange(0, BLOCK_M))
- tl.store(Metadata_ptr, m_i)
- tl.store(Metadata_ptr + stride_m2, l_i)
- @triton.jit
- def load_k_v_group(
- K_block_ptr,
- V_block_ptr,
- K_scale_shift_block_ptr,
- V_scale_shift_block_ptr,
- BOUNDS_CHECKS_N: tl.constexpr,
- PACKED_PER_VAL: tl.constexpr,
- BLOCK_DMODEL: tl.constexpr,
- ACTUAL_BLOCK_DMODEL: tl.constexpr,
- dtype: tl.constexpr,
- group_id: tl.constexpr,
- ):
- #Load K/V for a given block
- # Advance to the current quantization group
- K_block_ptr = tl.advance(K_block_ptr, (ACTUAL_BLOCK_DMODEL * group_id, 0))
- V_block_ptr = tl.advance(V_block_ptr, (0, ACTUAL_BLOCK_DMODEL * group_id))
- # -- load k, v --
- k = tl.load(K_block_ptr, boundary_check=(1, ) if BOUNDS_CHECKS_N else ())
- v = tl.load(V_block_ptr, boundary_check=(0, ) if BOUNDS_CHECKS_N else ())
- return k, v
- @triton.jit
- def cast_uint32_to_half2(scale_shift):
- # Extract two float16 packed into one int32
- scale = scale_shift & 0xFFFF
- shift = scale_shift >> 16
- scale = scale.to(tl.uint16).to(tl.float16, bitcast=True)
- shift = shift.to(tl.uint16).to(tl.float16, bitcast=True)
- return scale, shift
- @triton.jit
- def dequantize(
- x_,
- scale,
- shift,
- PACKED_PER_VAL: tl.constexpr = 8,
- ):
- # PACKED_PER_VAL is the number of values packed into
- # each element x_. For example, for int4 quantization
- #and x_ of type int32, PACKED_PER_VAL is 8.
- BLOCK_N: tl.constexpr = x_.shape[0]
- BLOCK_DMODEL_PACKED: tl.constexpr = x_.shape[1]
- offsets = tl.arange(0, PACKED_PER_VAL) * 4
- quant_offset = (x_[:, None, :] >> offsets[None, :, None]) # (BLOCK_N, PACKED_PER_VAL, D // PACKED_PER_VAL)
- quant_offset = tl.view(quant_offset, (BLOCK_N, BLOCK_DMODEL_PACKED * PACKED_PER_VAL))
- # Trick - instead of converting int4 to float16 we view it as float16
- # and then multiply by 32768 * 512 == 2**24
- quant_offset = (quant_offset & 0xF).to(tl.uint16).to(tl.float16, bitcast=True)
- quant_offset = (quant_offset * 32768.0).to(tl.float16)
- scale_512 = scale * 512
- dequant = quant_offset * scale_512 + shift
- return dequant
- @triton.jit
- def _splitK_reduce(
- Out_splitK, # [B, H, split_k, Mq, K]
- Metadata, # [B, H, 2, split_k, M_ceil] contains [mi, li]
- Out, # [B, H, M, K]
- LSE, # [B, H, M]
- stride_osk_zhg,
- stride_osk_s,
- stride_osk_m,
- stride_osk_k,
- stride_mzhg,
- stride_m2,
- stride_ms,
- stride_mm,
- stride_oz,
- stride_oh,
- stride_og,
- stride_om,
- stride_ok,
- stride_lse_zhg,
- stride_lse_m,
- M_ceil: tl.constexpr,
- BLOCK_SIZE: tl.constexpr,
- H: tl.constexpr,
- G: tl.constexpr,
- split_k: tl.constexpr,
- splitK_pow2: tl.constexpr,
- use_mask: tl.constexpr,
- IS_CAUSAL: tl.constexpr,
- ):
- off_zhg = tl.program_id(0)
- off_z = off_zhg // (H * G)
- off_h = (off_zhg // G) % H
- off_g = off_zhg % G
- off_m = tl.program_id(1)
- off_k = tl.program_id(2)
- # read chunk
- spk_idx = tl.arange(0, splitK_pow2)
- kidx = tl.arange(0, BLOCK_SIZE)
- Metadata_ptr = (Metadata + stride_mzhg * off_zhg + spk_idx * stride_ms + off_m * stride_mm)
- o_ptr = (Out_splitK + off_zhg * stride_osk_zhg + stride_osk_m * off_m + off_k * BLOCK_SIZE +
- stride_osk_s * spk_idx[:, None] + kidx[None, :] * stride_osk_k)
- # read max values of each splitK
- if use_mask:
- spk_mask = spk_idx < split_k
- l_m = tl.load(Metadata_ptr, mask=spk_mask, other=float("-inf"))
- l_sum = tl.load(Metadata_ptr + stride_m2, mask=spk_mask, other=0.0)
- acc = tl.load(o_ptr, mask=spk_mask[:, None], other=0.0)
- else:
- l_m = tl.load(Metadata_ptr)
- l_sum = tl.load(Metadata_ptr + stride_m2)
- acc = tl.load(o_ptr)
- g_m = tl.max(l_m, axis=0)
-
- if IS_CAUSAL:
- l_m_offset = l_m - g_m
- alpha = tl.where(l_m_offset > float("-inf"), tl.math.exp2(l_m_offset), 0.0)
- else:
- alpha = tl.math.exp2(l_m - g_m)
- # read sum
- l_sum *= alpha
- g_sum = tl.sum(l_sum, axis=0)
- acc = acc * alpha[:, None]
- if IS_CAUSAL:
- # Avoid division by zero
- g_sum_safe = tl.where(g_sum > 0, g_sum, 1.0)
- acc_out = tl.sum(acc, axis=0) / g_sum_safe
- else:
- acc_out = tl.sum(acc, axis=0) / g_sum
- # Store output
- Out_ptr = (Out + stride_oz * off_z + stride_oh * off_h + stride_og * off_g + stride_om * off_m +
- off_k * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE))
- tl.store(Out_ptr, acc_out)
- # Store lse
- l_ptrs = LSE + off_zhg * stride_lse_zhg + off_m
- if IS_CAUSAL:
- lse = tl.where(g_sum > 0, (g_m + tl.math.log2(g_sum)) / 1.44269504, g_m)
- tl.store(l_ptrs, lse)
- else:
- tl.store(l_ptrs, (g_m + tl.math.log2(g_sum)) / 1.44269504)
- def quantize_kv_int4(k: torch.Tensor, num_groups: int = 1) -> torch.Tensor:
- # Scale and shift are such that quantization linearly maps
- # int4 values range [0..15] to input values range min(k)..max(k)
- # individually for every row
- k = k.reshape(*k.shape[:-1], num_groups, k.shape[-1] // num_groups)
- max_vals = torch.max(k, dim=-1, keepdim=True).values
- min_vals = torch.min(k, dim=-1, keepdim=True).values
- scale_k: torch.Tensor = (max_vals - min_vals) / 15
- shift_k = torch.min(k, dim=-1, keepdim=True).values
- scale_k = scale_k.to(torch.float16)
- shift_k = shift_k.to(torch.float16)
- in_bytes = ((k - shift_k.expand(k.shape)) / scale_k.expand(k.shape)) + 0.5
- in_bytes = in_bytes.to(torch.uint8)
- in_int4 = in_bytes & 0xF
- in_int4_packed = in_int4[..., ::2] + (in_int4[..., 1::2] << 4)
- scale_shift = torch.concat([scale_k.view(torch.uint8), shift_k.view(torch.uint8)], dim=-1)
- k_quant = torch.concat(
- [
- scale_shift.flatten(start_dim=-2),
- in_int4_packed.flatten(start_dim=-2),
- ],
- dim=-1,
- ).view(torch.int16)
- return k_quant
- def dequantize_kv_fp16(quant_k: torch.Tensor, num_groups: int = 1) -> torch.Tensor:
- k_i16 = quant_k.view(torch.int16)
- k_ui8 = k_i16.view(torch.uint8)
- ss_size = num_groups * 4
- scale_shift_ui8 = k_ui8[..., 0:ss_size]
- scale_shift_ui8 = scale_shift_ui8.reshape(*scale_shift_ui8.shape[:-1], num_groups, 4)
- scale = scale_shift_ui8[..., 0:2].view(torch.float16)
- shift = scale_shift_ui8[..., 2:4].view(torch.float16)
- kv_ui8 = k_ui8[..., ss_size:]
- k_ui8 = kv_ui8.reshape(*kv_ui8.shape[:-1], num_groups, -1)
- k1_i4 = k_ui8 & 0xF
- k2_i4 = (k_ui8 & 0xF0) >> 4
- k_shape = k1_i4.shape
- k1_f16 = k1_i4.to(torch.float16) * scale.expand(k_shape) + shift.expand(k_shape)
- k2_f16 = k2_i4.to(torch.float16) * scale.expand(k_shape) + shift.expand(k_shape)
- out = torch.empty((*k1_f16.shape[:-1], k1_f16.shape[-1] * 2), dtype=torch.float16, device=quant_k.device)
- out[..., ::2] = k1_f16
- out[..., 1::2] = k2_f16
- out = out.reshape(*k_shape[:-2], -1)
- return out
- def get_split_k(B: int, G: int, H: int, Mk: int) -> int:
- """Heuristic for the number of splits"""
- bh = max(B * H, 1) # NOTE: Handle B*h=0 case
- split_k = max(Mk, 1024) // bh
- max_chunk_size = 64
- while split_k > 0 and Mk / split_k < max_chunk_size:
- split_k = split_k // 2
- while B * H * G * split_k >= 1024:
- split_k = split_k // 2
- split_k = min(split_k, 512)
- split_k = max(split_k, 1)
- return split_k
- def attention_decode_forward_triton_impl(q, k, v, sm_scale, causal, alibi_slopes, layout, cache_seqlens, cache_batch_idx, new_kv, k_new, v_new):
- # kernel config
- BLOCK_M = 16
- BLOCK_N = 64
- SPLIT_K = None
- NUM_QUANT_GROUPS = 1
- # kernels expects "bsghd"
- original_layout = layout
- if layout == "bshd":
- q=q.unsqueeze(2)
- k=k.unsqueeze(2)
- v=v.unsqueeze(2)
- if new_kv:
- k_new = k_new.unsqueeze(2)
- v_new = v_new.unsqueeze(2)
- layout = "bsghd"
- elif layout == "bhsd":
- q=q.permute(0, 2, 1, 3).unsqueeze(2)
- k=k.permute(0, 2, 1, 3).unsqueeze(2)
- v=v.permute(0, 2, 1, 3).unsqueeze(2)
- if new_kv:
- k_new = k_new.permute(0, 2, 1, 3).unsqueeze(2)
- v_new = v_new.permute(0, 2, 1, 3).unsqueeze(2)
- layout = "bsghd"
- elif layout == "bsghd":
- pass
- elif layout is None:
- raise ValueError("Layout not given")
- assert layout == "bsghd"
- # get dims
- batch_size, seqlen_q, n_group_q, heads_per_group_q, dim_q = q.shape
- _, seqlen_k, n_group_k, heads_per_group_k, dim_k = k.shape
- _, seqlen_v, n_group_v, heads_per_group_v, dim_v = v.shape
- assert dim_q == dim_k == dim_v, f"Dimensions must match: {dim_q}, {dim_k}, {dim_v}"
- # get padded size
- dim_padded = get_padded_headsize(dim_k)
- # Handle MQA/GQA case
- if heads_per_group_q > heads_per_group_k:
- is_gqa = True
- elif heads_per_group_q < heads_per_group_k:
- raise ValueError("heads_per_group_q < heads_per_group_k")
- else:
- is_gqa = False
- assert dim_k == dim_q, f"Keys have head dim {dim_k} but queries have head dim {dim_q}"
- if SPLIT_K is not None:
- split_k = SPLIT_K
- else:
- # Use heuristics
- split_k = get_split_k(batch_size, n_group_q, heads_per_group_q, seqlen_k) # NOTE: should the split think about seqlens?
- seqlen_q_ceil = (seqlen_q + BLOCK_M - 1) // BLOCK_M * BLOCK_M
- out_splitk = torch.empty([batch_size * n_group_q * heads_per_group_q, split_k, seqlen_q_ceil, dim_padded], dtype=torch.float32, device=q.device)
- metadata = torch.empty([batch_size * n_group_q * heads_per_group_q, 2, split_k, seqlen_q_ceil], dtype=torch.float32, device=q.device)
- lse = torch.empty((batch_size * n_group_q * heads_per_group_q, seqlen_q), device=q.device, dtype=torch.float32)
- grid = (triton.cdiv(seqlen_q, BLOCK_M), batch_size * n_group_q * heads_per_group_q, split_k)
- num_warps = 1
- split_size = (seqlen_k + split_k - 1) // split_k
- use_cache_seqlens = cache_seqlens is not None
- # TODO: enable quantization
- _fwd_kernel_splitK[grid](
- Q=q,
- K=k,
- V=v,
- sm_scale=sm_scale,
- Out_splitK=out_splitk,
- Metadata=metadata,
- K_new = k_new,
- V_new = v_new,
- Cache_seqlens=cache_seqlens,
- Cache_batch_idx=cache_batch_idx,
- Alibi_slopes=alibi_slopes,
- **_strides(q, "qz", "qm", "qg", "qh", "qd"),
- **_strides(k, "kz", "kn", "kg", "kh", "kd"),
- **_strides(v, "vz", "vn", "vg", "vh", "vd"),
- **_strides(out_splitk, "osk_zhg", "osk_s", "osk_m", "osk_d"),
- **_strides(metadata, "mzhg", "m2", "ms", "mm"),
- **_strides(k_new, "kn_z", "kn_n", "kn_g", "kn_h", "kn_d"),
- **_strides(v_new, "vn_z", "vn_n", "vn_g", "vn_h", "vn_d"),
- **_strides(alibi_slopes, "az", "ah"),
- Z=batch_size,
- H_q=heads_per_group_q,
- H_kv=heads_per_group_k,
- G_q=n_group_q,
- N_CTX_Q=seqlen_q,
- N_CTX_K=seqlen_k,
- N_CTX_NEW=k_new.shape[1] if new_kv else None,
- BLOCK_N_PER_SPLIT=split_size,
- BLOCK_M=BLOCK_M,
- BLOCK_N=BLOCK_N,
- BLOCK_DMODEL=dim_padded,
- ACTUAL_BLOCK_DMODEL=dim_k,
- BOUNDS_CHECKS_N=(split_size % BLOCK_N) > 0 or use_cache_seqlens,
- USE_CACHE_SEQLENs=use_cache_seqlens,
- USE_CACHE_BATCH_IDX=cache_batch_idx is not None,
- NEW_KV=new_kv,
- IS_GQA=is_gqa,
- IS_CAUSAL=causal,
- USE_ALIBI=False if alibi_slopes is None else True,
- num_warps=num_warps,
- num_stages=1,
- )
- out = torch.empty((batch_size, seqlen_q, n_group_q, heads_per_group_q, dim_padded), device=q.device, dtype=q.dtype)
- # Merge together
- splitK_pow2 = triton.next_power_of_2(split_k)
- use_mask = splitK_pow2 > split_k
- if batch_size * n_group_q * heads_per_group_q * seqlen_q >= 512:
- k_block_num = 1
- else:
- k_block_num = 2
- assert dim_padded % k_block_num == 0
- k_block_size = dim_padded // k_block_num
- grid = (batch_size * n_group_q * heads_per_group_q, seqlen_q, k_block_num)
- _splitK_reduce[grid](
- out_splitk,
- metadata,
- out,
- lse,
- **_strides(out_splitk, "osk_zhg", "osk_s", "osk_m", "osk_k"),
- **_strides(metadata, "mzhg", "m2", "ms", "mm"),
- **_strides(out, "oz", "om", "og", "oh", "ok"),
- **_strides(lse, "lse_zhg", "lse_m"),
- M_ceil=seqlen_q_ceil,
- BLOCK_SIZE=k_block_size,
- G=n_group_q,
- H=heads_per_group_q,
- # TODO: Tune num_warps
- split_k=split_k,
- splitK_pow2=splitK_pow2,
- use_mask=use_mask,
- IS_CAUSAL=causal,
- num_warps=4)
- lse = lse.reshape([batch_size, n_group_q, heads_per_group_q, seqlen_q])
- if q.ndim == 4:
- # BMGHK -> BMHK
- assert n_group_q == 1
- out = out[:, :, 0]
- lse = lse[:, 0]
- if seqlen_k == 0:
- out.zero_()
- out = out.reshape(batch_size, heads_per_group_q * n_group_q, -1, dim_padded).contiguous()
- # output is batch_size, heads_per_group_q * group_q, seqlen_q, dim_q
- if original_layout == "bshd":
- # out=out.transpose(1, 2).contiguous() # this screws up heads and data.
- # the data is laid out properly. Just need to reshape dims
- out = out.reshape(batch_size, seqlen_q, -1, dim_padded)
- return out.narrow(-1, 0, dim_k), lse
|