123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- # Adapted from https://github.com/NVIDIA/apex/blob/master/setup.py
- import sys
- import warnings
- import os
- from packaging.version import parse, Version
- import torch
- from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME
- from setuptools import setup, find_packages
- import subprocess
- # ninja build does not work unless include_dirs are abs path
- this_dir = os.path.dirname(os.path.abspath(__file__))
- def get_cuda_bare_metal_version(cuda_dir):
- raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
- output = raw_output.split()
- release_idx = output.index("release") + 1
- bare_metal_version = parse(output[release_idx].split(",")[0])
- return raw_output, bare_metal_version
- def check_cuda_torch_binary_vs_bare_metal(cuda_dir):
- raw_output, bare_metal_version = get_cuda_bare_metal_version(cuda_dir)
- torch_binary_version = parse(torch.version.cuda)
- print("\nCompiling cuda extensions with")
- print(raw_output + "from " + cuda_dir + "/bin\n")
- if (bare_metal_version != torch_binary_version):
- raise RuntimeError(
- "Cuda extensions are being compiled with a version of Cuda that does "
- "not match the version used to compile Pytorch binaries. "
- "Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda)
- + "In some cases, a minor-version mismatch will not cause later errors: "
- "https://github.com/NVIDIA/apex/pull/323#discussion_r287021798. "
- "You can try commenting out this check (at your own risk)."
- )
- def raise_if_cuda_home_none(global_option: str) -> None:
- if CUDA_HOME is not None:
- return
- raise RuntimeError(
- f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? "
- "If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, "
- "only images whose names contain 'devel' will provide nvcc."
- )
- def append_nvcc_threads(nvcc_extra_args):
- _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
- if bare_metal_version >= Version("11.2"):
- nvcc_threads = os.getenv("NVCC_THREADS") or "4"
- return nvcc_extra_args + ["--threads", nvcc_threads]
- return nvcc_extra_args
- if not torch.cuda.is_available():
- # https://github.com/NVIDIA/apex/issues/486
- # Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(),
- # which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command).
- print(
- "\nWarning: Torch did not find available GPUs on this system.\n",
- "If your intention is to cross-compile, this is not an error.\n"
- "By default, Apex will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n"
- "Volta (compute capability 7.0), Turing (compute capability 7.5),\n"
- "and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n"
- "If you wish to cross-compile for a single specific architecture,\n"
- 'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n',
- )
- if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None and CUDA_HOME is not None:
- _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
- if bare_metal_version >= Version("11.8"):
- os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6;9.0"
- elif bare_metal_version >= Version("11.1"):
- os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0;8.6"
- elif bare_metal_version == Version("11.0"):
- os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0"
- else:
- os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5"
- print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__))
- TORCH_MAJOR = int(torch.__version__.split(".")[0])
- TORCH_MINOR = int(torch.__version__.split(".")[1])
- cmdclass = {}
- ext_modules = []
- # Check, if ATen/CUDAGeneratorImpl.h is found, otherwise use ATen/cuda/CUDAGeneratorImpl.h
- # See https://github.com/pytorch/pytorch/pull/70650
- generator_flag = []
- torch_dir = torch.__path__[0]
- if os.path.exists(os.path.join(torch_dir, "include", "ATen", "CUDAGeneratorImpl.h")):
- generator_flag = ["-DOLD_GENERATOR_PATH"]
- raise_if_cuda_home_none("--xentropy")
- # Check, if CUDA11 is installed for compute capability 8.0
- cc_flag = []
- _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
- if bare_metal_version < Version("11.0"):
- raise RuntimeError("xentropy is only supported on CUDA 11 and above")
- cc_flag.append("-gencode")
- cc_flag.append("arch=compute_70,code=sm_70")
- cc_flag.append("-gencode")
- cc_flag.append("arch=compute_80,code=sm_80")
- if bare_metal_version >= Version("11.8"):
- cc_flag.append("-gencode")
- cc_flag.append("arch=compute_90,code=sm_90")
- ext_modules.append(
- CUDAExtension(
- name="xentropy_cuda_lib",
- sources=[
- "interface.cpp",
- "xentropy_kernel.cu"
- ],
- extra_compile_args={
- "cxx": ["-O3"] + generator_flag,
- "nvcc": append_nvcc_threads(
- ["-O3"]
- + generator_flag
- + cc_flag
- ),
- },
- include_dirs=[this_dir],
- )
- )
- setup(
- name="xentropy_cuda_lib",
- version="0.1",
- description="Cross-entropy loss",
- ext_modules=ext_modules,
- cmdclass={"build_ext": BuildExtension} if ext_modules else {},
- )
|