# Copyright (c) 2023, Tri Dao. from typing import Tuple, Optional, Union import torch import triton import triton.language as tl # `all_gather_into_tensor` and `reduce_scatter_tensor` are new placeholders for # `_all_gather_base` and `_reduce_scatter_base`. They require the most recent # version of PyTorch. The following 2 lines are for backward compatibility with # older PyTorch. if "all_gather_into_tensor" not in dir(torch.distributed): torch.distributed.all_gather_into_tensor = torch.distributed._all_gather_base @triton.heuristics( { "HAS_SMOOTHING": lambda args: args["smoothing"] > 0.0, } ) @triton.jit def cross_entropy_fwd_kernel( loss_ptr, # data ptrs lse_ptr, z_loss_ptr, logits_ptr, labels_ptr, smoothing, logit_scale, lse_square_scale, ignore_index, total_classes, class_start_idx, # Useful for tensor parallel when each rank only has a subset of classes n_cols, # shapes n_rows, logits_row_stride, # strides BLOCK_SIZE: tl.constexpr, HAS_SMOOTHING: tl.constexpr, # if SPLIT (e.g. tensor parallel), don't include the LSE in the loss since it's not the final LSE SPLIT: tl.constexpr, ): row_idx = tl.program_id(0) col_block_idx = tl.program_id(1) logits_ptr = logits_ptr + row_idx * logits_row_stride.to(tl.int64) col_offsets = col_block_idx * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) label_idx = tl.load(labels_ptr + row_idx) logits = tl.load(logits_ptr + col_offsets, mask=col_offsets < n_cols, other=-float("inf")).to( tl.float32 ) * logit_scale max_logits = tl.max(logits, 0) if HAS_SMOOTHING: sum_logits = tl.sum(tl.where(col_offsets < n_cols, logits, 0.0), 0) lse = tl.log(tl.sum(tl.exp(logits - max_logits), 0)) + max_logits tl.store(lse_ptr + col_block_idx * n_rows + row_idx, lse) if label_idx == ignore_index: loss = 0.0 z_loss = 0.0 else: label_idx -= class_start_idx if label_idx >= col_block_idx * BLOCK_SIZE and label_idx < min( n_cols, (col_block_idx + 1) * BLOCK_SIZE ): logits_label = tl.load(logits_ptr + label_idx) * logit_scale if HAS_SMOOTHING: loss = ( (lse if not SPLIT else 0.0) - smoothing * sum_logits / total_classes - (1 - smoothing) * logits_label ) else: loss = (lse if not SPLIT else 0.0) - logits_label else: # If label is out of bounds, we set the CE loss to 0.0. But we still want the smoothing loss if HAS_SMOOTHING: loss = smoothing * ((lse if not SPLIT else 0.0) - sum_logits / total_classes) else: loss = 0.0 if not SPLIT: z_loss = lse_square_scale * lse * lse loss += z_loss else: z_loss = 0.0 tl.store(loss_ptr + col_block_idx * n_rows + row_idx, loss) if not SPLIT: tl.store(z_loss_ptr + col_block_idx * n_rows + row_idx, z_loss) @triton.heuristics( { "HAS_SMOOTHING": lambda args: args["smoothing"] > 0.0, } ) @triton.jit def cross_entropy_bwd_kernel( dlogits_ptr, # data ptrs dloss_ptr, logits_ptr, lse_ptr, labels_ptr, smoothing, logit_scale, lse_square_scale, ignore_index, total_classes, class_start_idx, # Useful for tensor parallel when each rank only has a subset of classes n_cols, # shapes logits_row_stride, # strides dlogits_row_stride, dloss_row_stride, BLOCK_SIZE: tl.constexpr, HAS_SMOOTHING: tl.constexpr, ): row_idx = tl.program_id(0) col_block_idx = tl.program_id(1) logits_ptr = logits_ptr + row_idx * logits_row_stride.to(tl.int64) dlogits_ptr = dlogits_ptr + row_idx * dlogits_row_stride.to(tl.int64) col_offsets = col_block_idx * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) label_idx = tl.load(labels_ptr + row_idx) if label_idx != ignore_index: dloss = tl.load(dloss_ptr + row_idx * dloss_row_stride) else: dloss = 0.0 logits = tl.load(logits_ptr + col_offsets, mask=col_offsets < n_cols, other=-float("inf")).to( tl.float32 ) * logit_scale lse = tl.load(lse_ptr + row_idx) probs = tl.exp(logits - lse) probs += 2.0 * lse_square_scale * lse * probs label_idx -= class_start_idx if HAS_SMOOTHING: smooth_positive = 1.0 - smoothing smooth_negative = smoothing / total_classes probs = tl.where(col_offsets == label_idx, probs - (1 - smoothing), probs) - smooth_negative else: probs = tl.where(col_offsets == label_idx, probs - 1.0, probs) tl.store(dlogits_ptr + col_offsets, (dloss * logit_scale) * probs, mask=col_offsets < n_cols) class CrossEntropyLoss(torch.autograd.Function): @staticmethod def forward( ctx, logits, labels, smoothing=0.0, logit_scale=1.0, lse_square_scale=0.0, ignore_index=-100, inplace_backward=False, process_group=None, ): n_rows, n_cols = logits.shape assert labels.shape == (n_rows,) world_size = 1 if process_group is None else torch.distributed.get_world_size(process_group) total_classes = world_size * n_cols rank = 0 if process_group is None else torch.distributed.get_rank(process_group) class_start_idx = rank * n_cols if logits.stride(-1) != 1: logits = logits.contiguous() # Set these similar to https://github.com/openai/triton/blob/main/python/tutorials/02-fused-softmax.py MAX_BLOCK_SIZE = 64 * 1024 BLOCK_SIZE = min(triton.next_power_of_2(n_cols), MAX_BLOCK_SIZE) num_warps = ( 4 if BLOCK_SIZE < 2048 else (8 if BLOCK_SIZE < 8192 else (16 if BLOCK_SIZE < 128 * 1024 else 32)) ) # We may split the lse computation across multiple blocks, then do a reduction # lse(local_lse) to get the final LSE. This is faster for large n_cols (e.g., > 64k) # where having just one thread block processing more than 64k elements is slow. split = world_size > 1 or n_cols > MAX_BLOCK_SIZE n_splits = (n_cols + BLOCK_SIZE - 1) // BLOCK_SIZE loss_shape = (n_splits, n_rows) if n_splits > 1 else (n_rows,) losses = torch.empty(*loss_shape, dtype=torch.float, device=logits.device) lse = torch.empty(*loss_shape, dtype=torch.float, device=logits.device) z_losses = torch.empty(*loss_shape, dtype=torch.float, device=logits.device) # Need this, otherwise Triton tries to launch from cuda:0 and we get # ValueError: Pointer argument (at 0) cannot be accessed from Triton (cpu tensor?) with torch.cuda.device(logits.device.index): cross_entropy_fwd_kernel[(n_rows, n_splits)]( losses, # data ptrs lse, z_losses, logits, labels, smoothing, logit_scale, lse_square_scale, ignore_index, total_classes, class_start_idx, n_cols, # shapes n_rows, logits.stride(0), # strides BLOCK_SIZE=BLOCK_SIZE, # constants num_warps=num_warps, SPLIT=split, ) if split: # If there's no smoothing, if labels are in the vocab of this partition, losses contains # - predicted logit, and 0 otherwise. # If there's smoothing=0.1, for labels in the vocab of this partition, losses contains # -0.9 * predicted logit - 0.1 * sum logit / total_classes. # For labels not in the vocab of this partition, losses contains # -0.1 * sum logit / total_classes. if n_splits > 1: lse = torch.logsumexp(lse, dim=0) losses = losses.sum(dim=0) if world_size > 1: lse_allgather = torch.empty(world_size, n_rows, dtype=lse.dtype, device=lse.device) torch.distributed.all_gather_into_tensor(lse_allgather, lse, group=process_group) handle_losses = torch.distributed.all_reduce( losses, op=torch.distributed.ReduceOp.SUM, group=process_group, async_op=True ) lse = torch.logsumexp(lse_allgather, dim=0) handle_losses.wait() # After the allreduce, if there's no smoothing, the total losses are - predicted_logit, # we just have to add the (global) lse. # If there's smoothing=0.1, the total losses are # -0.9 * predicted_logit - 0.1 * sum logit / total_classes. # Again, we just have to add the (global) lse. losses += lse if lse_square_scale != 0.0: z_losses = lse_square_scale * lse.square() z_losses.masked_fill_(labels == ignore_index, 0.0) losses += z_losses else: z_losses = torch.zeros_like(losses) losses.masked_fill_(labels == ignore_index, 0.0) ctx.save_for_backward(logits, lse, labels) ctx.mark_non_differentiable(z_losses) ctx.smoothing = smoothing ctx.logit_scale = logit_scale ctx.lse_square_scale = lse_square_scale ctx.ignore_index = ignore_index ctx.total_classes = total_classes ctx.class_start_idx = class_start_idx ctx.inplace_backward = inplace_backward return losses, z_losses @staticmethod def backward(ctx, grad_losses, grad_z_losses): del grad_z_losses # z_losses are only for logging. logits, lse, labels = ctx.saved_tensors dlogits = logits if ctx.inplace_backward else torch.empty_like(logits) n_rows, n_cols = logits.shape BLOCK_SIZE = min(triton.next_power_of_2(n_cols), 4 * 1024) num_warps = 4 if BLOCK_SIZE < 2048 else (8 if BLOCK_SIZE < 8192 else 16) grid = lambda META: (n_rows, triton.cdiv(n_cols, META["BLOCK_SIZE"])) # noqa # Need this, otherwise Triton tries to launch from cuda:0 and we get # ValueError: Pointer argument (at 0) cannot be accessed from Triton (cpu tensor?) with torch.cuda.device(logits.device.index): cross_entropy_bwd_kernel[grid]( dlogits, # data ptrs grad_losses, logits, lse, labels, ctx.smoothing, ctx.logit_scale, ctx.lse_square_scale, ctx.ignore_index, ctx.total_classes, ctx.class_start_idx, n_cols, # shapes logits.stride(0), # strides dlogits.stride(0), grad_losses.stride(0), BLOCK_SIZE=BLOCK_SIZE, # constants num_warps=num_warps, ) return dlogits, None, None, None, None, None, None, None, None def cross_entropy_loss( logits: torch.Tensor, labels: torch.Tensor, label_smoothing: float = 0.0, logit_scale: float = 1.0, lse_square_scale: float = 0.0, ignore_index=-100, inplace_backward: bool = False, process_group=None, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Arguments: logits: (batch, vocab_size) labels: (batch,) label_smoothing: float logit_scale: float. Multiply logits by this scale before calculating the loss. lse_square_scale: float. If > 0, we add lse_square_scale * lse(logits) ^ 2 to the loss. This is also referred to as "z-loss". ignore_index: int. If labels == ignore_index, the loss is set to 0.0. inplace_backward: bool. If True, we do the backward pass in-place by modifying the logits. This saves memory. process_group: if not None, we're doing Tensor Parallel: each process is responsible for one part of the vocab. The loss will be aggregated across processes. Returns: losses: (batch,), float z_losses: (batch,), float """ return CrossEntropyLoss.apply( logits, labels, label_smoothing, logit_scale, lse_square_scale, ignore_index, inplace_backward, process_group, )