# Copyright (c) 2023, Tri Dao. # To run the huggingface implementation of LLaMa (1), we first need to convert the weights: # https://github.com/huggingface/transformers/pull/21955 # python -m transformers.models.llama.convert_llama_weights_to_hf --input_dir $CHECKPOINT_DIR/llama --model_size 7B --output_dir $CHECKPOINT_DIR/llama/7B-hf # and repeat for 13B, 30B, 65B import os import time from pathlib import Path current_dir = Path(__file__).parent.absolute() import shutil import pytest import torch from einops import rearrange from flash_attn.models.gpt import GPTLMHeadModel, combine_state_dicts_tp, shard_state_dict_tp from flash_attn.models.llama import ( config_from_checkpoint, inv_remap_state_dict_hf_llama, llama_config_to_gpt2_config, remap_state_dict_hf_llama, remap_state_dict_meta_llama, state_dicts_from_checkpoint, ) from flash_attn.utils.distributed import all_gather_raw from flash_attn.utils.generation import update_graph_cache from flash_attn.utils.pretrained import state_dict_from_pretrained from transformers import LlamaConfig, LlamaTokenizer from transformers.models.llama.modeling_llama import LlamaForCausalLM from transformers import AutoConfig def _pretrained_state_dict_from_checkpoint(checkpoint_path, model_name, config, checkpoint_format): if checkpoint_format == "meta": ckpt_state_dicts = state_dicts_from_checkpoint(checkpoint_path, model_name) pretrained_state_dicts = [remap_state_dict_meta_llama(s, config) for s in ckpt_state_dicts] pretrained_state_dict = combine_state_dicts_tp(pretrained_state_dicts, config) else: pretrained_state_dict = state_dict_from_pretrained( Path(checkpoint_path) / f"{model_name}-hf" ) pretrained_state_dict = remap_state_dict_hf_llama(pretrained_state_dict, config) return pretrained_state_dict @pytest.mark.parametrize("model_name", ["7B"]) def test_llama_state_dict(model_name): checkpoint_path = ( Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama" ) config = llama_config_to_gpt2_config(config_from_checkpoint(checkpoint_path, model_name)) ckpt_state_dicts = state_dicts_from_checkpoint(checkpoint_path, model_name) pretrained_state_dict = remap_state_dict_meta_llama(ckpt_state_dicts[0], config) model = GPTLMHeadModel(config, device="meta") # Without device='meta' init is very slow state_dict = model.state_dict() assert state_dict.keys() == pretrained_state_dict.keys() for k in state_dict.keys(): assert state_dict[k].shape == pretrained_state_dict[k].shape # TinyLlama-1.1B is to test MQA @pytest.mark.parametrize( "model_name", ["meta-llama/Llama-2-7b-hf", "PY007/TinyLlama-1.1B-step-50K-105b"] ) def test_inv_remap_state_dict_hf_llama(model_name): config = llama_config_to_gpt2_config( AutoConfig.from_pretrained(model_name, trust_remote_code=True) ) state_dict = state_dict_from_pretrained(model_name) # inv_remap_state_dict_hf_llama should be the inverse of remap_state_dict_hf_llama state_dict = {key: val for key, val in state_dict.items() if "rotary_emb.inv_freq" not in key} pretrained_state_dict = remap_state_dict_hf_llama(state_dict, config) state_dict_recover = inv_remap_state_dict_hf_llama(pretrained_state_dict, config) assert set(state_dict_recover.keys()) == set(state_dict.keys()) for key in state_dict_recover.keys(): torch.testing.assert_close(state_dict_recover[key], state_dict[key]) # TinyLlama-1.1B is to test MQA @pytest.mark.parametrize( "model_name", [ "7B", # Llama 1 "13B", # Llama 1 "meta-llama/Llama-2-13b-hf", "codellama/CodeLlama-7b-hf", "codellama/CodeLlama-13b-hf", "codellama/CodeLlama-34b-hf", "PY007/TinyLlama-1.1B-step-50K-105b", ], ) def test_llama_optimized(model_name): """Check that our implementation of LLaMa (with all optimizations enabled) matches the HF implementation: the output of our forward pass in fp16 should be around the same as the HF forward pass in fp16, when compared to the HF forward pass in fp32. """ checkpoint_path = ( Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama" ) dtype = torch.float16 device = "cuda" if "/" in model_name: # Download from HF config = llama_config_to_gpt2_config( AutoConfig.from_pretrained(model_name, trust_remote_code=True) ) else: config = config_from_checkpoint(checkpoint_path, model_name, checkpoint_format="meta") config = llama_config_to_gpt2_config(config) config.use_flash_attn = True config.fused_bias_fc = True config.fused_mlp = False # We don't have fused GatedMLP yet config.fused_dropout_add_ln = True config.residual_in_fp32 = True if "/" in model_name: # Download from HF pretrained_state_dict = remap_state_dict_hf_llama( state_dict_from_pretrained(model_name), config ) else: pretrained_state_dict = _pretrained_state_dict_from_checkpoint( checkpoint_path, model_name, config, checkpoint_format="meta" ) model = GPTLMHeadModel(config, device=device, dtype=dtype) model.load_state_dict(pretrained_state_dict) model.eval() torch.manual_seed(0) batch_size = 2 max_seqlen = 256 seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device) input_ids = torch.randint( 0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device ) with torch.no_grad(): out = model.transformer(input_ids) logits = model(input_ids).logits del model # Without device_map, the model is loaded on the CPU, which is very slow # Need auto here since the 13B fp32 model doesn't fit in memory on a A100 40GB model_ref = LlamaForCausalLM.from_pretrained( model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf", device_map="auto", ) model_ref.eval() with torch.no_grad(): out_ref = model_ref.model(input_ids).last_hidden_state.to(device=device) logits_ref = model_ref(input_ids).logits.to(device=device) del model_ref model_hf = LlamaForCausalLM.from_pretrained( model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf", torch_dtype=dtype, device_map={"": device}, ) model_hf.eval() with torch.no_grad(): out_hf = model_hf.model(input_ids).last_hidden_state logits_hf = model_hf(input_ids).logits del model_hf print(f"Output max diff: {(out - out_ref).abs().max().item()}") print(f"Output mean diff: {(out - out_ref).abs().mean().item()}") print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}") print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}") assert (out - out_ref).abs().max().item() < 3 * (out_hf - out_ref).abs().max().item() print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}") print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}") print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}") print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}") assert (logits - logits_ref).abs().max().item() < 3 * ( logits_hf - logits_ref ).abs().max().item() # torchrun --no_python --nproc_per_node=2 pytest -q -s tests/models/test_llama.py -k "parallel" @pytest.mark.parametrize("world_size", [2]) @pytest.mark.parametrize( "model_name", ["13B", "meta-llama/Llama-2-13b-hf", "codellama/CodeLlama-34b-hf"] ) def test_llama_parallel(model_name, world_size): """Check that our implementation of LLaMa (with all optimizations enabled) matches the HF implementation: the output of our forward pass in fp16 should be around the same as the HF forward pass in fp16, when compared to the HF forward pass in fp32. """ from apex.transformer import parallel_state checkpoint_path = ( Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama" ) dtype = torch.float16 if "/" in model_name: # Download from HF config = llama_config_to_gpt2_config( AutoConfig.from_pretrained(model_name, trust_remote_code=True) ) else: config = config_from_checkpoint(checkpoint_path, model_name, checkpoint_format="meta") config = llama_config_to_gpt2_config(config) config.use_flash_attn = True config.fused_bias_fc = True config.fused_mlp = False # We don't have fused GatedMLP yet config.fused_dropout_add_ln = True config.residual_in_fp32 = True if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl", init_method="env://") device = f"cuda:{torch.distributed.get_rank()}" assert world_size <= torch.distributed.get_world_size() parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size) rank = parallel_state.get_tensor_model_parallel_rank() process_group = parallel_state.get_tensor_model_parallel_group() if "/" in model_name: # Download from HF pretrained_state_dict = remap_state_dict_hf_llama( state_dict_from_pretrained(model_name), config ) else: pretrained_state_dict = _pretrained_state_dict_from_checkpoint( checkpoint_path, model_name, config, checkpoint_format="meta" ) model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype) model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank)) model.eval() torch.manual_seed(0) batch_size = 2 max_seqlen = 256 seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device) input_ids = torch.randint( 0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device ) with torch.no_grad(): out = model.transformer(input_ids) out, _ = all_gather_raw(out, process_group=process_group) out = rearrange(out, "(b s) d -> b s d", b=batch_size) logits = model(input_ids).logits logits = rearrange(logits, "(b s) d -> b s d", b=batch_size) logits, _ = all_gather_raw(logits, process_group) logits = rearrange(logits, "(n b) ... d -> b ... (n d)", b=batch_size) del model if rank == 0: # Without device_map, the model is loaded on the CPU, which is very slow model_ref = LlamaForCausalLM.from_pretrained( model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf", device_map="auto", ) model_ref.eval() with torch.no_grad(): out_ref = model_ref.model(input_ids).last_hidden_state.to(device=device) logits_ref = model_ref(input_ids).logits.to(device=device) del model_ref model_hf = LlamaForCausalLM.from_pretrained( model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf", torch_dtype=dtype, device_map="auto", ) model_hf.eval() with torch.no_grad(): out_hf = model_hf.model(input_ids).last_hidden_state.to(device=device) logits_hf = model_hf(input_ids).logits.to(device=device) del model_hf print(f"Output max diff: {(out - out_ref).abs().max().item()}") print(f"Output mean diff: {(out - out_ref).abs().mean().item()}") print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}") print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}") assert (out - out_ref).abs().max().item() < 2 * (out_hf - out_ref).abs().max().item() print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}") print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}") print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}") print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}") assert (logits - logits_ref).abs().max().item() < 2 * ( logits_hf - logits_ref ).abs().max().item() # @pytest.mark.parametrize('model_name', ["7B", "13B"]) @pytest.mark.parametrize("model_name", ["7B"]) @pytest.mark.parametrize("checkpoint_format", ["meta", "hf"]) def test_llama_generation(model_name, checkpoint_format): checkpoint_path = ( Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama" ) dtype = torch.float16 device = "cuda" config = config_from_checkpoint(checkpoint_path, model_name, checkpoint_format) config = llama_config_to_gpt2_config(config) config.use_flash_attn = True config.fused_bias_fc = True config.fused_mlp = False # We don't have fused GatedMLP yet config.fused_dropout_add_ln = True config.residual_in_fp32 = True tokenizer = LlamaTokenizer.from_pretrained(Path(checkpoint_path) / f"{model_name}-hf") eos_token_id = tokenizer.eos_token_id torch.manual_seed(0) batch_size = 1 seqlen = 100 max_length = 150 input_ids = torch.randint( 0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device ) model_hf = LlamaForCausalLM.from_pretrained( Path(checkpoint_path) / f"{model_name}-hf", torch_dtype=dtype, device_map={"": device} ) model_hf.eval() print("HF fp16") torch.cuda.synchronize() start = time.time() out_hf = model_hf.generate( input_ids=input_ids, max_length=max_length, return_dict_in_generate=True, output_scores=True ) torch.cuda.synchronize() print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms") del model_hf # Need auto here since the 13B fp32 model doesn't fit in memory on a A100 40GB model_ref = LlamaForCausalLM.from_pretrained( Path(checkpoint_path) / f"{model_name}-hf", device_map="auto" ) model_ref.eval() with torch.no_grad(): logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1) : -1].to(device=device) del model_ref pretrained_state_dict = _pretrained_state_dict_from_checkpoint( checkpoint_path, model_name, config, checkpoint_format ) model = GPTLMHeadModel(config, device=device, dtype=dtype) model.load_state_dict(pretrained_state_dict) model.eval() print("Without CUDA graph") torch.cuda.synchronize() start = time.time() out = model.generate( input_ids=input_ids, max_length=max_length, eos_token_id=eos_token_id, return_dict_in_generate=True, output_scores=True, enable_timing=True, teacher_outputs=out_hf.sequences, ) torch.cuda.synchronize() print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms") # Capture graph outside the timing loop batch_size, seqlen_og = input_ids.shape model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length) print("With CUDA graph") torch.cuda.synchronize() start = time.time() out_cg = model.generate( input_ids=input_ids, max_length=max_length, cg=True, return_dict_in_generate=True, output_scores=True, enable_timing=True, teacher_outputs=out_hf.sequences, ) torch.cuda.synchronize() print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms") with torch.no_grad(): logits_parallel = model(out_hf.sequences).logits[:, (seqlen - 1) : -1] logits_hf = torch.stack(out_hf.scores, dim=1) logits = torch.stack(out.scores, dim=1) logits_cg = torch.stack(out_cg.scores, dim=1) del model hf_error = (logits_hf - logits_ref).abs().max().item() print(f"HF fp16 logits max diff: {hf_error}") print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}") print(f"Logits CG max diff: {(logits_cg - logits_ref).abs().max().item()}") assert (logits_parallel - logits_ref).abs().max().item() < 2 * hf_error assert (logits - logits_ref).abs().max().item() < 2 * hf_error assert torch.equal(logits_cg, logits) # torchrun --no_python --nproc_per_node=2 pytest -q -s tests/models/test_llama.py -k "llama_parallel_generation" @pytest.mark.parametrize("world_size", [2]) @pytest.mark.parametrize( "model_name", ["13B", "meta-llama/Llama-2-13b-hf", "codellama/CodeLlama-34b-hf"] ) def test_llama_parallel_generation(model_name, world_size): """Check that our implementation matches the HF implementation: the scores in fp16 should be around the same as the HF scores in fp16, when compared to the HF scores in fp32. """ from apex.transformer import parallel_state checkpoint_path = ( Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama" ) dtype = torch.float16 if "/" in model_name: # Download from HF config = llama_config_to_gpt2_config( AutoConfig.from_pretrained(model_name, trust_remote_code=True) ) else: config = config_from_checkpoint(checkpoint_path, model_name, checkpoint_format="meta") config = llama_config_to_gpt2_config(config) config.use_flash_attn = True config.fused_bias_fc = True config.fused_mlp = False # We don't have fused GatedMLP yet config.fused_dropout_add_ln = True config.residual_in_fp32 = True config.pad_vocab_size_multiple = 8 * world_size config.sequence_parallel = False # Need to set this to False for generation os.environ["NCCL_ASYNC_ERROR_HANDLING"] = "0" if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl", init_method="env://") device = f"cuda:{torch.distributed.get_rank()}" assert world_size <= torch.distributed.get_world_size() parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size) rank = parallel_state.get_tensor_model_parallel_rank() process_group = parallel_state.get_tensor_model_parallel_group() torch.manual_seed(0) batch_size = 1 seqlen = 100 max_length = 150 input_ids = torch.randint( 0, config.vocab_size, (batch_size, seqlen), dtype=torch.long, device=device ) # Need this, otherwise when we capture the graph the process for GPU 1 would run on both # GPU0 and GPU1 and things would hang torch.cuda.set_device(device) if "/" in model_name: # Download from HF pretrained_state_dict = remap_state_dict_hf_llama( state_dict_from_pretrained(model_name), config ) else: pretrained_state_dict = _pretrained_state_dict_from_checkpoint( checkpoint_path, model_name, config, checkpoint_format="meta" ) model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype) model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank)) model.eval() print("Without CUDA graph") out = model.generate( input_ids=input_ids, max_length=max_length, tensor_parallel=world_size, vocab_size=config.vocab_size, # teacher_outputs=out_hf.sequences, return_dict_in_generate=True, output_scores=True, enable_timing=True, ) # Capture graph outside the timing loop batch_size, seqlen_og = input_ids.shape model._decoding_cache = update_graph_cache(model, None, batch_size, seqlen_og, max_length) print("With CUDA graph") out_cg = model.generate( input_ids=input_ids, max_length=max_length, tensor_parallel=world_size, vocab_size=config.vocab_size, cg=True, # teacher_outputs=out_hf.sequences, return_dict_in_generate=True, output_scores=True, enable_timing=True, ) del model parallel_state.destroy_model_parallel() if rank == 0: # Without device_map, the model is loaded on the CPU, which is very slow model_hf = LlamaForCausalLM.from_pretrained( model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf", torch_dtype=dtype, device_map="auto", ) model_hf.eval() print("HF fp16") torch.cuda.synchronize() start = time.time() with torch.inference_mode(): out_hf = model_hf.generate( input_ids=input_ids, max_length=max_length, return_dict_in_generate=True, output_scores=True, ) torch.cuda.synchronize() print(f"Prompt processing + decoding time: {(time.time() - start) * 1000:.0f}ms") del model_hf model_ref = LlamaForCausalLM.from_pretrained( model_name if "/" in model_name else Path(checkpoint_path) / f"{model_name}-hf", device_map="auto", ) model_ref.eval() with torch.inference_mode(): logits_ref = model_ref(out_hf.sequences).logits[:, (seqlen - 1) : -1] del model_ref logits_hf = torch.stack(out_hf.scores, dim=1) logits = torch.stack(out.scores, dim=1) logits_cg = torch.stack(out_cg.scores, dim=1) hf_error = (logits_hf - logits_ref).abs().max().item() print(f"HF fp16 logits max diff: {hf_error}") print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}") assert (logits - logits_ref).abs().max().item() < 2 * hf_error print(f"Logits CG max diff: {(logits_cg - logits_ref).abs().max().item()}") assert torch.equal(logits_cg, logits) @torch.no_grad() @pytest.mark.parametrize("world_size", [2]) def test_llama_parallel_uneven_num_heads(world_size): from apex.transformer import parallel_state checkpoint_path = ( Path(os.environ.get("CHECKPOINT_DIR", current_dir.parent.parent / "checkpoints")) / "llama" ) num_attention_heads = world_size + 1 model_name = f"teeny-{num_attention_heads}-heads" if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl", init_method="env://") device = f"cuda:{torch.distributed.get_rank()}" assert world_size <= torch.distributed.get_world_size() parallel_state.initialize_model_parallel(tensor_model_parallel_size_=world_size) rank = parallel_state.get_tensor_model_parallel_rank() process_group = parallel_state.get_tensor_model_parallel_group() dtype = torch.float16 llama_config = LlamaConfig( hidden_size=256 * num_attention_heads, # ParallelGatedMlp hidden_features must be divisible by 256 intermediate_size=256 * num_attention_heads * 4, num_hidden_layers=4, num_attention_heads=num_attention_heads, initializer_range=0.5, # Set crazy init range so we don't have near zero weights implying a vacuous test. ) config = llama_config_to_gpt2_config(llama_config) config.use_flash_attn = True config.fused_bias_fc = True config.fused_mlp = False # We don't have fused GatedMLP yet config.fused_dropout_add_ln = True config.residual_in_fp32 = True torch.manual_seed(0) batch_size = 2 max_seqlen = 256 seqlens = torch.randint(max_seqlen // 2, max_seqlen + 1, (batch_size,), device=device) input_ids = torch.randint( 0, config.vocab_size, (batch_size, max_seqlen), dtype=torch.long, device=device ) # Create a shared test model. if rank == 0: LlamaForCausalLM(config=llama_config).save_pretrained(checkpoint_path / f"{model_name}-hf") torch.distributed.barrier() # Run the standard forward pass test. pretrained_state_dict = _pretrained_state_dict_from_checkpoint( checkpoint_path, model_name, config, checkpoint_format="hf" ) model = GPTLMHeadModel(config, process_group=process_group, device=device, dtype=dtype) model.load_state_dict(shard_state_dict_tp(pretrained_state_dict, config, world_size, rank)) model.eval() # TODO: Avoid duplicate code. Modularize the comparison of two forward pass diffs. out = model.transformer(input_ids) out, _ = all_gather_raw(out, process_group=process_group) out = rearrange(out, "(b s) d -> b s d", b=batch_size) logits = model(input_ids).logits logits = rearrange(logits, "(b s) d -> b s d", b=batch_size) logits, _ = all_gather_raw(logits, process_group) logits = rearrange(logits, "(n b) ... d -> b ... (n d)", b=batch_size) if rank == 0: model_ref = LlamaForCausalLM.from_pretrained( Path(checkpoint_path) / f"{model_name}-hf", device_map={"": device} ) model_ref = model_ref.to(device=device) model_ref.eval() out_ref = model_ref.model(input_ids).last_hidden_state logits_ref = model_ref(input_ids).logits del model_ref model_hf = LlamaForCausalLM.from_pretrained( Path(checkpoint_path) / f"{model_name}-hf", torch_dtype=dtype, device_map={"": device} ) model_hf.eval() out_hf = model_hf.model(input_ids).last_hidden_state.to(device=device) logits_hf = model_hf(input_ids).logits.to(device=device) del model_hf print(f"Output max diff: {(out - out_ref).abs().max().item()}") print(f"Output mean diff: {(out - out_ref).abs().mean().item()}") print(f"HF fp16 max diff: {(out_hf - out_ref).abs().max().item()}") print(f"HF fp16 mean diff: {(out_hf - out_ref).abs().mean().item()}") assert (out - out_ref).abs().max().item() < 2 * (out_hf - out_ref).abs().max().item() print(f"Logits max diff: {(logits - logits_ref).abs().max().item()}") print(f"Logits mean diff: {(logits - logits_ref).abs().mean().item()}") print(f"HF fp16 max diff: {(logits_hf - logits_ref).abs().max().item()}") print(f"HF fp16 mean diff: {(logits_hf - logits_ref).abs().mean().item()}") assert (logits - logits_ref).abs().max().item() < 2 * ( logits_hf - logits_ref ).abs().max().item() if os.path.exists(checkpoint_path / f"{model_name}-hf"): shutil.rmtree(checkpoint_path / f"{model_name}-hf")