# Adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py import torch import torch.nn.functional as F from einops import rearrange, repeat class IndexFirstAxis(torch.autograd.Function): @staticmethod def forward(ctx, input, indices): ctx.save_for_backward(indices) assert input.ndim >= 2 ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:] second_dim = other_shape.numel() # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing. # return input[indices] return torch.gather( rearrange(input, "b ... -> b (...)"), 0, repeat(indices, "z -> z d", d=second_dim) ).reshape(-1, *other_shape) @staticmethod def backward(ctx, grad_output): (indices,) = ctx.saved_tensors assert grad_output.ndim >= 2 other_shape = grad_output.shape[1:] grad_output = rearrange(grad_output, "b ... -> b (...)") grad_input = torch.zeros( [ctx.first_axis_dim, grad_output.shape[1]], device=grad_output.device, dtype=grad_output.dtype, ) # TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing. # grad_input[indices] = grad_output grad_input.scatter_(0, repeat(indices, "z -> z d", d=grad_output.shape[1]), grad_output) return grad_input.reshape(ctx.first_axis_dim, *other_shape), None index_first_axis = IndexFirstAxis.apply class IndexPutFirstAxis(torch.autograd.Function): @staticmethod def forward(ctx, values, indices, first_axis_dim): ctx.save_for_backward(indices) assert indices.ndim == 1 assert values.ndim >= 2 output = torch.zeros( first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype ) # TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing. output[indices] = values # output.scatter_(0, repeat(indices, 'z -> z d', d=values.shape[1]), values) return output @staticmethod def backward(ctx, grad_output): (indices,) = ctx.saved_tensors # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing. grad_values = grad_output[indices] # grad_values = torch.gather(grad_output, 0, repeat(indices, 'z -> z d', d=grad_output.shape[1])) return grad_values, None, None index_put_first_axis = IndexPutFirstAxis.apply class IndexFirstAxisResidual(torch.autograd.Function): @staticmethod def forward(ctx, input, indices): ctx.save_for_backward(indices) assert input.ndim >= 2 ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:] second_dim = other_shape.numel() # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing. output = input[indices] # We don't want to reshape input (b ... -> b (...)) since it could change the channel_last # memory format to channel_first. In other words, input might not be contiguous. # If we don't detach, Pytorch complains about output being a view and is being modified inplace return output, input.detach() @staticmethod def backward(ctx, grad_output, grad_residual): (indices,) = ctx.saved_tensors assert grad_output.ndim >= 2 other_shape = grad_output.shape[1:] assert grad_residual.shape[1:] == other_shape grad_input = grad_residual # grad_input[indices] += grad_output indices = indices.reshape(indices.shape[0], *((1,) * (grad_output.ndim - 1))) indices = indices.expand_as(grad_output) grad_input.scatter_add_(0, indices, grad_output) return grad_input.reshape(ctx.first_axis_dim, *other_shape), None index_first_axis_residual = IndexFirstAxisResidual.apply def unpad_input(hidden_states, attention_mask, unused_mask=None): """ Arguments: hidden_states: (batch, seqlen, ...) attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid. unused_mask: (batch, seqlen), bool / int, 1 means the element is allocated but unused. Return: hidden_states: (total_nnz, ...), where total_nnz = number of tokens selected in attention_mask + unused_mask. indices: (total_nnz), the indices of masked tokens from the flattened input sequence. cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states. max_seqlen_in_batch: int seqused: (batch), returns the number of tokens selected in attention_mask + unused_mask. """ all_masks = (attention_mask + unused_mask) if unused_mask is not None else attention_mask seqlens_in_batch = all_masks.sum(dim=-1, dtype=torch.int32) used_seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(all_masks.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) # TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the # bool mask, then call nonzero to get the indices, then index with those. The indices is @dim # times larger than it needs to be, wasting memory. It's faster and more memory-efficient to # index with integer indices. Moreover, torch's index is a bit slower than it needs to be, # so we write custom forward and backward to make it a bit faster. return ( index_first_axis(rearrange(hidden_states, "b s ... -> (b s) ..."), indices), indices, cu_seqlens, max_seqlen_in_batch, used_seqlens_in_batch, ) def unpad_input_for_concatenated_sequences(hidden_states, attention_mask_in_length): """ Supports concatenating short samples in one sequence. The attention_mask_in_length is utilized to mask other short samples. It helps efficient training of variant lengths-based samples (e.g., the supervised fine-tuning task in large language model). The motivation for this function is explained [here](https://github.com/Dao-AILab/flash-attention/issues/432#issuecomment-1668822286). For example, if batch = 3 and seqlen = 6, the attention_mask_in_length is: ``` [ [2, 3, 0, 0, 0, 0], [3, 2, 0, 0, 0, 0], [6, 0, 0, 0, 0, 0] ] ``` , which refers to the 3D-attention mask: ``` [ [ [1, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [0, 0, 1, 1, 0, 0], [0, 0, 1, 1, 1, 0], [0, 0, 0, 0, 0, 1] ], [ [1, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 1, 0], [0, 0, 0, 0, 0, 1] ], [ [1, 0, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0], [1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1] ] ] ```. Arguments: hidden_states: (batch, seqlen, ...) attention_mask_in_length: (batch, seqlen), int, a nonzero number (e.g., 1, 2, 3, etc.) means length of concatenated sequence in b-th batch, and 0 means none. Return: hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence. cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states. max_seqlen_in_batch: int """ length = attention_mask_in_length.sum(dim=-1) seqlen = attention_mask_in_length.size(-1) attention_mask_2d = torch.arange(seqlen, device=length.device, dtype=length.dtype).expand(len(length), seqlen) < length.unsqueeze(1) real_indices_idx = torch.nonzero(attention_mask_in_length.flatten(), as_tuple=False).flatten() seqlens_in_batch = attention_mask_in_length.flatten()[real_indices_idx] indices = torch.nonzero(attention_mask_2d.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) # TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the # bool mask, then call nonzero to get the indices, then index with those. The indices is @dim # times larger than it needs to be, wasting memory. It's faster and more memory-efficient to # index with integer indices. Moreover, torch's index is a bit slower than it needs to be, # so we write custom forward and backward to make it a bit faster. return ( index_first_axis(rearrange(hidden_states, "b s ... -> (b s) ..."), indices), indices, cu_seqlens, max_seqlen_in_batch, ) def pad_input(hidden_states, indices, batch, seqlen): """ Arguments: hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. indices: (total_nnz), the indices that represent the non-masked tokens of the original padded input sequence. batch: int, batch size for the padded sequence. seqlen: int, maximum sequence length for the padded sequence. Return: hidden_states: (batch, seqlen, ...) """ dim = hidden_states.shape[-1] # output = torch.zeros((batch * seqlen), dim, device=hidden_states.device, dtype=hidden_states.dtype) # output[indices] = hidden_states output = index_put_first_axis(hidden_states, indices, batch * seqlen) return rearrange(output, "(b s) ... -> b s ...", b=batch)